Skip to main content
Log in

Impact of DCF properties on system design

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

The dispersion-compensating fiber is an important optical element of current and future optical networks. In this paper, we review the impact that various properties of dispersion-compensating fibers has on the performance of optical communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, 1994).

  • P.S. Henry, R.A. Linke, and A.H. Gnauck, Introduction to Lightwave Systems, in Optical Fiber Telecommunications II, edited by Stewart E. Miller and I. P. Kaminov (Academic Press, 1988), Chapter 21, pp. 781-831.

  • F.P. Kapron, D.B. Keck and R.D. Maurer, "Radiation losses in glass optical waveguides,'' Appl. Phys. Lett. 17, 423-425 (1970).

    Article  ADS  Google Scholar 

  • D. Marcuse, A.R. Chraplyvy, and R.W. Tkach, "Effect of fiber nonlinearity on longdistance transmission,'' J. Lightwave Technol. 9, 121-128 (1991).

    Article  ADS  Google Scholar 

  • D. Marcuse, "Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,'' J. Lightwave Technol. 9, 356-361 (1991).

    Article  ADS  Google Scholar 

  • C. Lin, H. Kogelnik, and L.G. Cohen, ''Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3-1.7-μm spectral region,'' Opt. Lett. 5, 476-478 (1980).

    ADS  Google Scholar 

  • F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,'' Opt. Lett. 12, 847-849 (1987).

    ADS  Google Scholar 

  • L.J. Cimini, L.J. Greenstein, and A.A.M. Saleh, "Optical Equalization to Combat the Effects of Laser Chirp and Fiber Dispersion,'' J. Lightwave Technol. 8, 649-659 (1990).

    Article  ADS  Google Scholar 

  • K. Iwashita and N. Takachio, "Chromatic dispersion compensation in coherent optical communications'', J. Lightwave Technol. 8, 367-375 (1990).

    Article  ADS  Google Scholar 

  • A.R. Chraplyvy, A.H. Gnauck, R.W. Tkach, and R.M. Derosier, "8 × 10 Gb/s transmission through 280-km of dispersion-managed fiber,'' IEEE Photon. Technol. Lett. 5, 1233-1235 (1993).

    Article  ADS  Google Scholar 

  • C. Kurtzke, "Suppression of fiber nonlinearities by appropriate dispersion management,'' IEEE Photon. Technol. Lett. 5, 1250-1253 (1993).

    Article  ADS  Google Scholar 

  • A.H. Gnauck, R.M. Jopson, P.P. Iannone, and R.M. Derosier, "Transmission of two wavelength-multiplexed 10 Gbit/s channels over 560 km of dispersive fibre,'' Electron. Lett. 30, 727-728 (1994).

    Article  ADS  Google Scholar 

  • A. Naka, and S. Saito, "Transmission distance of in-line amplifier systems with groupvelocity-dispersion compensation,'' J. Lightwave Technol. 13, 862-867 (1995).

    Article  ADS  Google Scholar 

  • M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, "Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,'' Electron. Lett. 31, 2027-2029 (1995).

    Article  Google Scholar 

  • R.A. Jensen, R.E. Tench, D.G. Duff, C.R. Davidson, C.D. Chen, O. Mizuhara, T.V. Nguyen, L.D. Tzeng, and P.D. Yeates, "Field Measurements of 10 Gb/s Line Rate Transmission on the Columbus-2B Submarine Lightwave System,'' IEEE Photon. Technol. Lett. 7, 1366-1368 (1995).

    Article  ADS  Google Scholar 

  • J.C. Feggeler, D.G. Duff, N.S. Bergano, C.C. Chen, Y.C. Chen, C.R. Davidson, D.G. Ehrenberg, S.J. Evangelides, G.A. Ferguson, F.L. Heismann, G.M. Homsey, H.D. Kidorf, T.M. Kissell, A.E. Meixner, R. Menges, J.L. Miller Jr., O. Mizuhara, T.V. Nguyen, B.M. Nyman, Y.K. Park, W.W. Patterson, and G.F. Valvo, "10 Gb/s WDM Transmission Measurements on an Installed Optical Amplifier Undersea Cable System,'' Electron. Lett. 31, 1676-1678 (1995).

    Article  Google Scholar 

  • A.R. Chraplyvy and R.W. Tkach, "Terabit/Second Transmission Experiments,'' IEEE J. Quantum Electron. 34, 2103-2108 (1998).

    Article  ADS  Google Scholar 

  • J. Bromage, P.J. Winzer, and R.-J. Essiambre, Multiple-path interference and its impact on system design, in Raman Amplifiers and Oscillators in Telecommunications, edited by M. N. Islam (Springer Verlag, 2003).

  • P.B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A.J. Stentz, "Raman amplification for loss compensation in dispersion compensating fibre modules,'' Electron. Lett. 34, 1136-1137 (1998).

    Article  Google Scholar 

  • P.B. Hansen, L. Eskildsen, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, and D.J. DiGiovanni, "Rayleigh Scattering Limitations in Distributed Raman Pre-Amplifiers,'' IEEE Photon. Technol. Lett. 10, 159-161 (1998).

    Article  ADS  Google Scholar 

  • A. Altuncu, L. Noel, W.A. Pender, A.S. Siddiqui, T. Widdowson, A.D. Ellis, M.A. Newhouse, A.J. Antos, G. Kar, and P.W. Chu, "40 Gbit/s error free transmission over a 68-km distributed erbium-doped fibre amplifier,'' Electron. Lett. 32, 233-234 (1996).

    Article  Google Scholar 

  • L.F. Mollenauer, R.H. Stolen, and M.N. Islam, "Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain,'' Opt. Lett. 10, 229-231 (1985).

    Article  ADS  Google Scholar 

  • L.F. Mollenauer and K. Smith, "Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain,'' Opt. Lett. 13, 675-677 (1988).

    ADS  Google Scholar 

  • M.N. Islam (Ed.), Raman Amplifiers for Telecommunications 1: Physical Principles and Raman Amplifiers for Telecommunications 2: Sub-Systems and Systems, Springer Series in Optical Sciences (Springer-Verlag, 2003).

  • H.J. Thiele, L. Molle, T. Eggert, F. Raub, and R. Freund, "S-band Erbium-Doped Fibre Amplifiers for 40 Gb/s WDM Transmission,'' Proc. of the European Conference on Optical Communications (ECOC'04), paper Tu1.5.7 (2004).

  • R. Ohhira, Y. Yano, A. Noda, Y. Suzuki, C. Kurioka, M. Tachigori, S. Moribayashi, K. Fukuchi, T. Ono, and T. Suzuki, "40 Gbit/s × 8-ch NRZ WDM transmission experiment over 80 km × 5-span using distributed Raman amplification in RDF,'' Proc. of the European Conference on Optical Communications (ECOC'99), pp. 176-177 (1999).

  • T. Okuno, T. Tsuzaki, and M. Nishimura, "Novel lossless optical transmission line with distributed Raman amplification,'' Proc. of the European Conference on Optical Communications (ECOC'00), Vol. 2, pp. 7576 (2000).

  • I. Morita, K. Tanaka, N. Edagawa, and M. Suzuki, "40 Gbit/s × 16 WDM transmission over 2000 km using dispersion managed low-nonlinear fiber span,'' Proc. of the European Conference on Optical Communications (ECOC'00), Vol. 4, pp. 2526 (2000).

  • H.S. Chung, H. Kim, S.E. Jin, E.S. Son, D.W. Kim, K.M. Lee, H.Y. Park, and Y.C. Chung, "320-Gb/s WDM Transmission with 50-GHz Channel Spacing Over 564 km of Short-Period Dispersion-Managed Fiber (Perfect Cable),'' IEEE Photon. Technol. Lett. 12, 1397-1399 (2000).

    Article  ADS  Google Scholar 

  • T. Yamamoto, E. Yoshida, K. R. Tamura, K. Yonenaga, and M. Nakazawa, "640-Gbit/s Optical TDMTransmission Over 92 km Through a Dispersion-Managed Fiber Consisting of Single-Mode Fiber and Reverse Dispersion Fiber,'' IEEE Photon. Technol. Lett. 12, 353-355 (2000).

    Article  ADS  Google Scholar 

  • S.N. Knudsen, M.O. Pedersen, and L. Gruner-Nielsen, "Optimisation of dispersion compensating fibres for cabled long-haul applications,'' Electron. Lett. 36, 2067-2068 (2000).

    Article  Google Scholar 

  • S.N. Knudsen, B. Zhu, L. E. Nelson, M.O. Pedersen, D.W. Peckham, and S. Stulz, "420 Gbit/s (4210 Gbit/s) WDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification,'' Electron. Lett. 37, 965-967 (2001).

    Article  MathSciNet  Google Scholar 

  • B. Zhu, S.N. Knudsen, L.E. Nelson, D.W. Peckham, M.O. Pedersen, and S. Stulz, "800 Gbit/s (80 × 10.664 Gbit/s) WDM transmission over 5200 km of fibre employing 100km dispersion Managed spans,'' Electron. Lett. 37, 1467-1469 (2001).

    Article  Google Scholar 

  • R. Hainberger, T. Hoshida, T. Terahara, and H. Onaka, "Comparison of Span Configurations of Raman-Amplified Dispersion-Managed Fibers,'' IEEE Photon. Technol. Lett. 14, 471-473 (2002).

    Google Scholar 

  • C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves- Hall, "DWDM 40G Transmission Over Trans-Pacific Distance (10 000 km) Using CSRZDPSK, Enhanced FEC, and All-Raman-Amplified 100-km UltraWave Fiber Spans,'' J. Lightwave Technol. 22, 203-207 (2004).

    Article  ADS  Google Scholar 

  • T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, N. Edagawa, and S. Akiba, "70-GHz-Spaced 40 42.7 Gb/s Transpacific Transmission Over 9400 km Using Prefiltered CSRZ-DPSK Signals, All-Raman Repeaters, and Symmetrically Dispersion-Managed Fiber Spans,'' J. Lightwave Technol. 22, 215-223 (2004).

    Article  ADS  Google Scholar 

  • D.F. Grosz, A. Agarwal, A.P. Kung, S. Banerjee, D.N. Maywar, and T.H. Wood, "Performance of a ULH Single Wide-Band All-Raman DWDM Transmission System Over Dispersion-Managed Spans,'' IEEE Photon. Technol. Lett. 16, 1197-1199 (2004).

    Article  ADS  Google Scholar 

  • M.M.E. Said, J. Sitch, and M.I. Elmasry, "An electrically pre-equalized 10-Gb/s duobinary transmission system,'' J. Lightwave Technol. 23, 388-400 (2005).

    Article  ADS  Google Scholar 

  • D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G.652 fiber at 10 Gb/s with no optical dispersion compensation,'' Proc. of the Optical Fiber Communication (OFC'05), paper PDP27 (2005).

  • R.-J. Essiambre and P.J. Winzer, "Fibre Nonlinearities in Electronically Pre-Distorted Transmission,'' Proc. of the European Conference on Optical Communication (ECOC'05), invited paper Tu3.2.2 (2005).

  • P.J. Winzer and R.-J. Essiambre, "Electronic pre-distortion for advanced modulation formats,'' Proc. of the European Conference on Optical Communication (ECOC'05), paper Tu4.2.2 (2005).

  • H. Sugahara, "Analysis of power jitter induced by interchannel interactions in dispersion-managed optical soliton transmission systems,'' IEEE Photon. Technol. Lett. 13, 963-965 (2001).

    Article  ADS  Google Scholar 

  • S. Banerjee, A. Agarwal, D.F. Grosz, A.P. Kung, and D.N. Maywar, "Doubly periodic Dispersion Maps for 10 Gb/s and 40 Gb/s Ultra-Long-Haul Transmission,'' Electron. Lett. 40, 1287-1288 (2004).

    Article  Google Scholar 

  • C. Xie, "A doubly periodic dispersion map for ultralong-haul 10- and 40-Gb/s hybrid DWDM optical mesh networks,'' IEEE Photon. Technol. Lett. 17, 1091-1093 (2005).

    Article  ADS  Google Scholar 

  • F. Forghieri, R.W. Tkach, A.R. Chraplyvy, and A.M. Vengsarkar, "Dispersion Compensating Fiber: Is There Merit in the Figure of Merit?'' Proc. of the Optical Fiber Communications Conference (OFC'96), paper ThM5 (1996).

  • F. Forghieri, R.W. Tkach, and A.R. Chraplyvy, "Dispersion Compensating Fiber: Is There Merit in the Figure of Merit?'' IEEE Photon. Technol. Lett. 9, 970-972 (1997).

    Article  ADS  Google Scholar 

  • P. Sillard, B. Dany, A. Bertaina, L. Curinckx, C. Bastide, O. Courtois, J.-C. Antona, and S. Bigo, "Simple criterion of quality to evaluate DCM impact on WDM system performance,'' Proc. of the Optical Fiber Communications Conference (OFC'04), paper FA3 (2004).

  • N.S. Bergano, Undersea communication systems, in Optical Fiber Telecommunications IV B, edited by I. Kaminow and T. Li (Academic Press, 2002).

  • S.D. Personick, "Receiver design for digital fiber optic communication systems, I,'' Bell. Syst. Technol. J. 52, 843-874 (1973).

    Google Scholar 

  • G. Einarsson, Principles of Lightwave Communications (John Wiley & Sons, 1996).

  • G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, 3rd edition, 2002).

  • L. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communication Systems (Artech House, Inc., 1996).

  • P.J. Winzer, "Receiver noise modeling in the presence of optical amplification,'' Proc. of the Optical Amplifiers and their Applications (OAA'01), OTuE16 (2001); P.J. Winzer, Performance estimation of receivers corrupted by optical noise, in OSA Trends in Optics and Photonics (TOPS), vol. 60, (N. Jolley, J.D. Minelly, and Y. Nakano, eds.), pp 268-273, (2001).

  • P.J. Winzer, S. Chandrasekhar, and H. Kim, "Impact of filtering on RZ-DPSK reception,'' IEEE Photon. Technol. Lett. 15, 840-842 (2003).

    Article  ADS  Google Scholar 

  • R.D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communications Principles, Plenum Press (1992).

  • P.J. Winzer and A. Kalmar, "Sensitivity Enhancement of Optical Receivers by Impulsive Coding,'' J. Lightwave Technol. 17, 171-177 (1999).

    Article  ADS  Google Scholar 

  • P.J.Winzer, R.-J. Essiambre, and J. Bromage, "Combined Impact of Double-Rayleigh Backscatter and Amplified Spontaneous Emission on Receiver Noise,'' Proc. of the Optical Fiber Communications Conference (OFC'02), Paper ThGG87, pp. 734-735 (2002).

  • N.A. Olsson, "Lightwave Systems with Optical Amplifiers,'' J. Lightwave Technol. 7, 1071-1082 (1989).

    Article  ADS  Google Scholar 

  • P. Wan and J. Conradi, "Impact of Double Rayleigh Backscatter Noise on Digital and Analog Fiber Systems,'' J. Lightwave Technol. 14, 288-297 (1996).

    Article  ADS  Google Scholar 

  • B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).

  • P.J. Winzer, R.-J. Essiambre, and S. Chandrasekhar, "Dispersion-tolerant optical communication systems,'' Proc. of the European Conference on Optical Communications (ECOC'04), paper We2.4.1 (2004).

  • R.G. Smith, "Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,'' Appl. Opt. 11, 2489-2494 (1972).

    ADS  Google Scholar 

  • M. Nissov, K. Rottwitt, H.D. Kidorf, and M.X. Ma, "Rayleigh Crosstalk in Long Cascades of Distributed Unsaturated Raman Amplifiers,'' Electron. Lett. 35, 997-998 (1999).

    Article  Google Scholar 

  • M. Oskar van Deventer, "Polarization Properties of Rayleigh Backscattering in Single-Mode Fibers,'' J. Lightwave Technol. 11, 1895-1899 (1993).

  • H.A. Haus, Electromagnetic noise and quantum optical measurements (Springer Verlag, 2000).

  • E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (John Wiley & Sons, 2002).

  • R.I. Laming, M.N. Zervas, and D.N. Payne, "Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figure,'' IEEE Photon. Technol. Lett. 4, 1345-1347 (1992).

    Article  ADS  Google Scholar 

  • P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology (Academic Press, San Diego, 1999).

  • A. Yariv, H. Blauvelt, and S.-W. Wu, "A Reduction of Interferometric Phase-to-Intensity Conversion Noise in Fiber Links by Large Index Phase Modulation of the Optical Beam,'' J. Lightwave Technol. 10, 978-981 (1992).

    Article  ADS  Google Scholar 

  • K. Shimizu, T. Horiguchi, and Y. Koyamada, "Charateristics and Reduction of Coherent Fading Noise in Rayleigh Backscattering Measurement for Optical Fibers and Components,'' J. Lightwave Technol. 10, 982-987 (1992).

    Article  ADS  Google Scholar 

  • B. Wedding, "New method for optical transmission beyond dispersion limit,'' Electron. Lett. 28, 1298-1300 (1992).

    Google Scholar 

  • R.S. Vodhanel, A.F. Elrefaie, M.Z. Iqbal, R.E. Wagner, J.L. Gimlett, and S. Tsuji, "Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,'' J. Lightwave Technol. 8, 1379-1386 (1990).

  • F.N. Timofeev, P. Bayvel, V. Mikhailov, O.A. Lavrova, R. Wyatt, R. Kashyap, M. Robertson, and J.E. Midwinter, "2.5 Gbit/s directly-modulated fibre grating laser for WDM networks,'' Electron. Lett. 33, 1406-1407 (1997).

    Article  Google Scholar 

  • L. Nelson, I. Woods, and J. K. White, "Transmission over 560 km at 2.5 Gb/s using a directly modulated buried heterostructure gain-coupled DFB semiconductor laser,'' Proc. of the Optical Fiber Communication Conference (OFC'02), pp. 422-423 (2002).

  • P.J.Winzer and R.-J. Essiambre, "Advanced optical modulation formats,'' Proc. of the European Conference on Optical Communications (ECOC'03), paper Th2.6.1, pp. 1002-1003 (2003).

  • P.J. Winzer and R.-J. Essiambre, "System trade-offs for different optical modulation formats,'' Proc. of the Optical Amplifiers and Their Applications (OAA''04), OTuC4 (2004).

  • P.J. Winzer, C. Dorrer, R.-J. Essiambre, and I. Kang, "Chirped return-to-zero modulation by imbalanced pulse carver driving signals,'' IEEE Photon. Technol. Lett. 16, 1379-1381 (2004).

    Article  ADS  Google Scholar 

  • H. Kim and R.-J. Essiambre, "Transmission of 8×20 Gb/s DQPSK signals over 310-km SMF with 0.8-b/s/Hz spectral efficiency,'' IEEE Photon. Technol. Lett. 15, 769-771 (2003).

    Article  ADS  Google Scholar 

  • R. Griffin, R. Johnstone, R. Walker, S. Wadsworth, A. Carter, and M. Wale, "Integrated DQPSK transmitter for dispersion-tolerant and dispersion-managed DWDM transmission,'' Proc. of the Optical Fiber Communications Conference (OFC'03), pp. 770-771 (2003).

  • S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,'' IEEE Photon. Technol. Lett. 9, 1005-1007 (1997); [comments by D. Penninckx: IEEE Photon. Technol. Lett. 10, 902 (1998).]

    Article  ADS  Google Scholar 

  • J.H. Winters and R.D. Gitlin, "Electrical signal processing techniques in long-haul fiber-optic systems'', IEEE Trans. Commun. 38, 1439-1453 (1990).

    Article  Google Scholar 

  • F. Buchali, H. Bulow, and W. Kuebart, "Adaptive decision feedback equalizer for 10 Gbit/s dispersion mitigation,'' Proc. of the European Conference on Optical Communications (ECOC'00), vol.2, pp. 101-102 (2001).

  • D. Castagnozzi, "Digital signal processing and electronic equalization (EE) of ISI,'' Proc. of the Optical Fiber Communications Conference (OFC'04), paper WM6 (2004).

  • H.F. Haunstein, K. Sticht, A. Dittrich, M. Lorang, W. Sauer-Greff, and R. Urbansky, "Implementation of near optimum electrical equalization at 10 Gbit/s,'' Proc. of the European Conference on Optical Communications (ECOC'00), vol.3, pp. 223-224 (2000).

  • F. Buchali and H. Bulow, "Adaptive PMD compensation by electrical and optical techniques,'' J. Lightwave Technol. 22, 1116-1126 (2004).

    Article  ADS  Google Scholar 

  • G.S. Kanter, A.K. Samal, O. Coskun, and A. Gandhi,"Electronic equalization for enabling communications at OC-192 rates using OC-48 components,'' Optics Express 11, 2019-2029 (2003).

    Article  ADS  Google Scholar 

  • C.R. Doerr, A.H. Gnauck, L.W. Stulz, and D.M. Gill, "Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,'' IEEE Photon. Technol. Lett. 15, 1624-1626 (2003).

    Article  ADS  Google Scholar 

  • C.R. Doerr, S. Chandrasekhar, P.J. Winzer, A.R. Chraplyvy, A.H. Gnauck, L.W. Stulz, R. Pafchek, and E. Burrows, "Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,'' J. Lightwave Technol. 22, 249-256 (2004).

    Article  Google Scholar 

  • P.J. Winzer and R.-J. Essiambre, "Receivers for advanced optical modulation formats,'' Proc. of the 16th annual meeting of IEEE/LEOS (LEOS''03), paper ThA1 (2003).

  • A.J. Weiss, "On the performance of electrical equalization in optical fiber transmission systems,'' IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).

    Article  ADS  Google Scholar 

  • S.L. Woodward, S.-Y. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensator in a 100-km 10-Gb/s ring network,'' IEEE Photon. Technol. Lett. 15, 867-869 (2003).

    Article  ADS  Google Scholar 

  • M.D. Feuer, S.-Y. Huang, S.L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,'' IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).

    Article  ADS  Google Scholar 

  • P.J. Winzer, F. Fidler, M.J. Matthews, L.E. Nelson, S. Chandrasekhar, L.L. Buhl, M. Winter, and D. Castagnozzi, "Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6 Tb/s-km,'' Proc. of the Optical Fiber Communications Conference (OFC'04), paper PDP7 (2004).

  • C.R.S. Fludger, J.E.A. Whiteaway, and P.J. Anslow, "Electronic Equalisation for Low Cost 10 Gbit/s Directly Modulated Systems,'' Proc. of the Optical Fiber Communications Conference (OFC'04), paper WM7 (2004).

  • M. Cavallari, C.R.S. Fludger, and P.J. Anslow, "Electronic Signal Processing for Differential Phase Modulation Formats,'' Proc. of the Optical Fiber Communications Conference (OFC'04), paper TuG2 (2004).

  • A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s receiver with digital equalizer using maximum likelihood sequence estimation,'' Proc. of the European Conference on Optical Communication (ECOC'04), paper Th4.1.5 (2004).

  • T. Mizuochi, K. Kubo, H. Yoshida, H. Fujita, H. Tagami, M. Akita, and K. Motoshima, "Next generation FEC for optical transmission systems,'' Proc. of the Optical Fiber Communications Conference (OFC'03), paper ThN1 (2003).

  • S. Chandrasekhar and L. L. Buhl, "Performance of forward error correction coding in the presence of in-band crosstalk,'' Proc. of the Optical Fiber Communications Conference (OFC'02), paper WP1 (2002).

  • G.P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, San Diego, 2001).

  • R.-J. Essiambre, B. Mikkelsen, and G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,'' Electron. Lett. 35, 1576-1578 (1999).

    Article  Google Scholar 

  • P.V. Mamyshev and N.A. Mamysheva, "Pulse-overlapped dispersion-managed data transmission and intra-channel four-wave mixing,'' Opt. Lett. 24, 1454-1456 (1999).

    ADS  Google Scholar 

  • R.-J. Essiambre, G. Raybon, and B. Mikkelsen, Pseudo-linear transmission of highspeed TDM signals: 40 and 160 Gb/s, in Optical Fiber Telecommunications IV B, edited by I. Kaminov and T. Li, pp. 232-304 (Academic Press, 2002).

  • R.-J. Essiambre, P. Winzer, J. Bromage, and C.H. Kim , "Design of Bidirectionally Pumped Fiber Amplifiers Generating Double Rayleigh Backscattering,'' IEEE Photon. Technol. Lett. 14, 914-916 (2002).

    Article  ADS  Google Scholar 

  • C. Fukai, K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, and I. Sankawa, "A Study of the Optimum Fiber Design for a Distributed Raman Amplification Transmission System, " IEEE Photon. Technol. Lett. 15, 1642-1644 (2003).

    Article  ADS  Google Scholar 

  • H.S. Seo, Y.G. Choi, and K.H. Kim, "Design of Transmission Optical Fiber With a High Raman Gain, Large Effective Area, Low Nonlinearity, and Low Double Rayleigh Backscattering,'' IEEE Photon. Technol. Lett. 16, 72-74 (2004).

    Article  ADS  Google Scholar 

  • P. Pecci, S. Lanne, Y. Frignac, J-C. Antona, G. Charlet and S. Bigo, "Tolerance to dispersion compensation parameters of six modulation formats in systems operating at 43Gbit/s,'' Proc. of the European Conference on Optical Communications (ECOC'03), paper We3.5.5 (2003).

  • H. Kogelnik, L.E. Nelson, and R.M. Jopson, Polarization-mode dispersion, in Optical Fiber Telecommunications IV B, edited by I. Kaminow and T. Li (Academic Press, 2002).

  • P.J. Winzer, H. Kogelnik, C.-H. Kim, H. Kim, R.M. Jopson, L.E. Nelson, and K. Ramanan, "Receiver Impact on first-order PMD Outage,'' IEEE Photon. Technol. Lett. 15, 1482-1484 (2003).

    Article  ADS  Google Scholar 

  • S.R. Chinn, "Analysis of counter-pumped small-signal fibre Raman amplifiers,'' Electron. Lett. 33, 607-608 (1997).

    Article  Google Scholar 

  • A. Kobyakov, M. Vasilyev, S. Tsuda, G. Giudice, and S. Ten, "Analytical model for Raman noise figure in dispersion-managed fibers,'' IEEE Photon. Technol. Lett. 15, 30-32 (2003).

    Article  ADS  Google Scholar 

  • A. Carena, V. Curri, and P. Poggiolini, "On the Optimization of Hybrid Raman/ Erbium-Doped Fiber Amplifiers,'' IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).

    Article  ADS  Google Scholar 

  • E.M. Dianov, "Advances in Raman fibers,'' J. Lightwave Technol. 20, 1457-1462 (2002).

    Article  ADS  Google Scholar 

  • W. Hatton and M. Nishimura, "Temperature dependence of chromatic dispersion in single mode fibers,'' J. Lightwave Technol. 4, 1552-1555 (1986).

    Article  ADS  Google Scholar 

  • K.S. Kim and M.E. Lines, "Temperature dependence of chromatic dispersion in dispersion-shifted fibers: Experiment and analysis,'' Appl. Phys. Lett. 73, 2069-2074 (1993).

    Google Scholar 

  • K. Yonenaga, A.Hirano, S. Kuwahara, Y. Miyamoto, H. Toba, K. Sato, and H. Miyazawa, "Temperature-independent 80 Gbit/s OTDM transmission experiment using zero-dispersion-flattened transmission line,'' Electron. Lett. 36, 343-345 (2000).

    Article  Google Scholar 

  • M.J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, "Investigation into the temperature dependence of chromatic dispersion in optical fiber,'' IEEE Photon. Technol. Lett. 14, 1524-1526 (2002).

    Article  ADS  Google Scholar 

  • H.C. Ji, J.H. Lee, and Y.C. Chung, "Evaluation on system outage probability due to temperature variation and statistically distributed chromatic dispersion of optical fiber,'' J. Lightwave Technol. 22, 1893-1898 (2004).

    Article  ADS  Google Scholar 

  • A. Walter, G.S. Schaefer, "Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,'' Proc. of the Optical Fiber Communication Conference (OFC'02), paper WU4, 332-333 (2002).

  • R. Kashyap, Fiber Bragg Gratings (Harcourt Brace & Company, 1999).

  • L.E. Nelson, R.M. Jopson, A.H. Gnauck, and A.R. Chraplyvy, "Resonances in cross-phase modulation impairment in wavelength-division-multiplexed lightwave transmission,'' IEEE Photon. Technol. Lett. 11, 907-909 (1999).

    Article  ADS  Google Scholar 

  • G. Bellotti and S. Bigo, "Cross-phase modulation suppressor for multispan dispersionmanaged WDM transmissions,'' IEEE Photon. Technol. Lett. 12, 726-728 (2000).

    Article  ADS  Google Scholar 

  • M.H. Eiselt, "Does spectrally periodic dispersion compensation reduce nonlinear effects?,'' Proc. of the European Conference on Optical Communications (ECOC'99), paper TuC1.2 (1999).

  • G. Bellotti, S. Bigo, P.-Y. Cortes, S. Gauchard, and S. LaRochelle, "10/spl times/10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg gratings,'' IEEE Photon. Technol. Lett. 12, 1403-1405 (2000).

    Article  ADS  Google Scholar 

  • M.H. Eiselt, C.B. Clausen, and R.W. Tkach, "Performance Characterization of Components With Group Delay Fluctuations,'' IEEE Photon. Technol. Lett. 15, 1076-1078 (2003).

    Article  ADS  Google Scholar 

  • International Standard IEC 60794-3, Part 3: "Optical fiber cables,'' September 2001, Appendix A.

  • L. Gruner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, and H. Damsgaard, "Dispersion Compensating Fibres,'' Opt. Fiber Technol. 6, 164-180 (2000).

    Article  ADS  Google Scholar 

  • Y. Painchaud, M. Lapointe, and M. Guy, "Slope-matched tunable dispersion compensation over the full C-band based on fiber Bragg gratings,'' Proc. of the European Conference on Optical Communication (ECOC'04), paper We3.3.4 (2004).

  • L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C.A. Hulse, "Tunable Dispersion Compensation at 40-Gb/s Using a Multicavity Etalon All-Pass Filter With NRZ, RZ, and CS-RZ Modulation,'' J. Lightwave Technol. 20, 2136-2144 (2002).

    Article  ADS  Google Scholar 

  • D.N. Maywar, S. Banerjee, A. Agarwal, D.F. Grosz, M. Movassaghi, A.P. Kung, and T.H. Wood, "Impact of relaxed dispersion map and gain ripple on ultra-wideband 10-Gb/s transmission,'' Electron. Lett. 39, 1266-1267 (2003).

    Article  Google Scholar 

  • A. Agarwal, S. Banerjee, D.F. Grosz, A.P. Kung, D.N. Maywar, T.H. Wood, "Ultralong-haul transmission of 40 Gb/s RZ-DPSK in a 10/40G hybrid system over 2500 km of NZ-DSF,'' IEEE Photon. Technol. Lett. 15, 1779-1781 (2003).

    Article  ADS  Google Scholar 

  • M. Vasilyev, I. Tomkos, J.-K. Rhee, M. Mehendale, B.S. Hallock, B.K. Szalabofka, M. Williams, S. Tsuda, M. Sharma, "Broadcast and Select OADM in 80 × 10.7 Gb/s ultra-longhaul network'', J. Lightwave Technol. 15, 332-334 (2003).

    Google Scholar 

  • D.F. Grosz, A. Agarwal, S. Banerjee, D.N. Maywar, and A.P. Kung, "All-Raman Ultralong-Haul Single-Wideband DWDM Transmission Systems With OADM Capability,'' J. Lightwave Technol. 22, 423-432 (2004).

    Article  ADS  Google Scholar 

  • M. Morin, M. Poulin, A. Mailloux, F. Trepanier, and Y. Painchaud, "Full C-Band slope-matched dispersion compensation based on a phase sampled Bragg grating,'' Proc. of the Optical Fiber Communication Conference (OFC'04), paper WK1 (2004).

  • X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, "Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,'' IEEE Photon. Technol. Lett. 15, 1111-1113 (2003).

    Article  ADS  Google Scholar 

  • S. Doucet, R. Slavk, and S. LaRochelle, "Tunable Dispersion and Dispersion Slope Compensator Using Novel Gires-Tournois Bragg Grating Coupled-Cavities,'' IEEE Photon. Technol. Lett. 16, 2529-2531 (2004).

    Article  ADS  Google Scholar 

  • D. Yang, C. Lin, W. Chen, and G. Barbarossa, "Fiber Dispersion and Dispersion Slope Compensation in a 4-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity Gires-Tournois Etalons,'' IEEE Photon. Technol. Lett. 16, 299-301 (2004).

    Article  ADS  Google Scholar 

  • C.-H. Hsieh, R. Wang, Z.J. Wen, I. McMichael, P. Yeh, C.-W. Lee, and W.-H. Chen, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer,'' IEEE Photon. Technol. Lett. 15, 242-244 (2003).

    Article  ADS  Google Scholar 

  • G. Lenz and C.K. Madsen, "General Optical All-Pass Filter Structures for Dispersion Control in WDM Systems,'' J. Lightwave Technol. 17, 1248-1254 (1999).

    Article  ADS  Google Scholar 

  • C.K. Madsen and G. Lenz, "Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,'' IEEE Photon. Technol. Lett. 10, 994-996 (2003).

    Article  ADS  Google Scholar 

  • C.K. Madsen, E.J. Laskowski, J. Bailey, M.A. Capuzzo, S. Chandrasekhar, L.T. Gomez, A. Griffin, P. Oswald, and L.W. Stulz, "The Application of Integrated Ring Resonators to Dynamic Dispersion Compensation,'' Proc. of the Optical Fiber Communication Conference (OFC'02), Paper TuJ2, pp. 29-30 (2002).

  • S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, "Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers,'' IEEE Photon. Technol. Lett. 15, 727-729 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  • H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, "40-Gb/s WDM Transmission With Virtually Imaged Phased Array (VIPA) Variable Dispersion Compensators,'' J. Lightwave Technol. 20, 2196-2203 (2002).

    Article  ADS  Google Scholar 

  • T.A. Birks, D. Mogilevtsev, J.C. Knight, and P. St.J. Russell, "Dispersion Compensation Using Single-Material Fibers,'' IEEE Photon. Technol. Lett. 11, 674-676 (1999).

    Article  ADS  Google Scholar 

  • Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, "Dual-Core Photonic Crystal Fiber for Dispersion Compensation,'' IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

    Article  ADS  Google Scholar 

  • M. Yagi, S. Satomi, S. Tanaka, S. Ryu, and S. Asano, "Field Trial of Automatic Chromatic Dispersion Compensation for 40-Gb/s-Based Wavelength Path Protection,'' IEEE Photon. Technol. Lett. 17, 229-231 (2005).

    Article  ADS  Google Scholar 

  • D.F. Grosz, A. Kung, D.N. Maywar, L. Altman, M. Movassaghi, H.C. Lin, D.A. Fishman, and T.H. Wood, "Demonstration of All-Raman Ultra-Wide-Band Transmission of 1.28 Tb/s (128 × 10 Gb/s) over 4000 km of NZ-DSF with Large BER Margins,'' Proc. of the European Conference on Optical Communication (ECOC'01), Paper PD B.1.3, pp. 72-73 (2001).

  • D.F. Grosz, D.N. Maywar, A.P. Kung, A. Agarwal, and S. Banerjee, "Performance of Non-Fiber Based Dispersion Compensation for Long-haul 10.7 Gb/s DWDM Transmission,'' Electron. Lett. 40, 825-827 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene-Jean Essiambre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essiambre, RJ., Winzer, P. & Grosz, D. Impact of DCF properties on system design. J Optic Comm Rep 3, 221–291 (2006). https://doi.org/10.1007/s10297-006-0071-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-006-0071-7

Keywords

Navigation