Skip to main content
Log in

Tunable Fabry–Perot filter and grating hybrid modulator to improve dispersive spectrometer resolution

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe a tunable Fabry–Perot filter and grating hybrid modulator to achieve a higher spectral resolution compared with that produced by a single grating with the same period. In the hybrid modulator, a tunable Fabry–Perot filter is designed with a long cavity to accommodate a multi-order narrowband pre-filter. A grating is then utilized to separate these multi-orders spatially. Scanning the air gap of the tunable Fabry–Perot filter within 1/2 wavelength, the entire spectrogram can be achieved by compositing each group of transmitted multi-orders. Light passes first through the Fabry–Perot cavity and then into the grating. Thus, all of the light is incident on the Fabry–Perot cavity at a given angle, which can reduce the requirement for incident beam alignment and simplify the operation of the hybrid modulator. The structural matching conditions of the tunable Fabry–Perot filter and grating were presented based on the operating law of the hybrid modulator. In terms of the Rayleigh criterion, the practical spectral resolution of the hybrid modulator can be increased by at least twice that of the single grating. Experiments with a neon lamp revealed that the spectral resolution of the hybrid modulator was nearly double that of a single grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.F. Wolffenbuttel, IEEE Trans. Instrum. Meas. 53, 197 (2004)

    Article  Google Scholar 

  2. H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, D.A.B. Miller, Sens. Actuat. A Phys. 120, 110 (2005)

    Article  Google Scholar 

  3. P. Cheben, I. Powell, S. Janz, D.X. Xu, Opt. Lett. 30, 1824 (2005)

    Article  ADS  Google Scholar 

  4. I. Avrutsky, K. Chaganti, I. Salakhutdinov, G. Auner, Appl. Opt. 45, 7811 (2006)

    Article  ADS  Google Scholar 

  5. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, G. Vdovin, Opt. Express 15, 3581 (2007)

    Article  ADS  Google Scholar 

  6. S.W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, T. Zhang, Opt. Lett. 32, 632 (2007)

    Article  ADS  Google Scholar 

  7. R. Brunner, M. Burkhardt, K. Rudolf, N. Correns, Opt. Express 16, 12239 (2008)

    Article  ADS  Google Scholar 

  8. X.P. Blanco, R.D.L. Fuente, Opt. Commun. 328, 143 (2014)

    Article  ADS  Google Scholar 

  9. D. Tosi, S. Poeggel, G. Leen, E. Lewis, Sens. Actuat. A Phys. 206, 144 (2014)

    Article  Google Scholar 

  10. J.P. Carmo, R.P. Rocha, M. Bartek, G. Graaf, R.F. Wolffenbuttel, J.H. Correi, Opt. Laser Technol. 44, 2312 (2012)

    Article  ADS  Google Scholar 

  11. M. Lackner et al., Opt. Lett. 31, 3170 (2006)

    Article  ADS  Google Scholar 

  12. L.P. Schuler, J.S. Milne, J.M. Dell, L. Faraone, J. Phys. D Appl. Phys. 42, 133001 (2009)

    Article  ADS  Google Scholar 

  13. K.W. Meissner, J. Opt. Soc. Am. 31, 416 (1941)

    Article  Google Scholar 

  14. M.J. Porter, Astrophys. Space Sci. 273, 217 (2000)

    Article  ADS  Google Scholar 

  15. Z.D. Shi, L. Fang, C.X. Zhou, Appl. Opt. 53, 76 (2014)

    Article  ADS  Google Scholar 

  16. M. Born, E. Wolf, Principle of Optics, 6th edn. (Pergamon, New York, 1980)

    Google Scholar 

  17. M. Xiang, Y.M. Cai, Y.M. Wu, J.Y. Yang, Y.L. Wang, Appl. Opt. 43, 3258 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61308064), the National Basic Research Program of China (973 Program) (No. 2014CB744204), and the National Program for Significant Scientific Instruments Development of China (No. 2011YQ03012407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongxi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Li, G., Yang, H. et al. Tunable Fabry–Perot filter and grating hybrid modulator to improve dispersive spectrometer resolution. Appl. Phys. B 122, 145 (2016). https://doi.org/10.1007/s00340-016-6416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6416-x

Keywords

Navigation