Skip to main content
Log in

Performance analysis of 160 Gbps single channel FSO transmission with integrated polarization division multiplexing-orthogonal frequency division multiplexing across various Indian cities

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive simulative analysis of a high-speed single-channel integrated Single Mode Fiber (SMF)-Free Space Optics (FSO) transmission link employing Integrated Polarization Division Multiplexing-Orthogonal Frequency Division Multiplexing (PDM-OFDM) technology across diverse urban environments in India. The study investigates the performance metrics including bit error rate (BER), error vector magnitude (EVM) %, optical signal-to-noise ratio (OSNR) in decibels (dB), and received optical power (dBm) to assess the efficacy of the proposed system under varying atmospheric conditions and geographical locations. Four major Indian cities, namely Chandigarh, Chennai, Jodhpur, and Srinagar, have been selected as representative locations for the analysis. The length of SMF is fixed at 50 km. The simulations reveal notable differences in the achievable FSO link range based on the performance metrics across these cities. Chandigarh demonstrates a maximum link range of 1700 m, while Chennai achieves the farthest transmission distance of 2500 m. Srinagar and Jodhpur exhibit link ranges of 1600 m and 2250 m, respectively. These results highlight the impact of atmospheric conditions and geographical factors on the performance of FSO transmission systems.The findings presented in this paper contribute to the optimization of FSO communication systems for urban deployments in India, offering valuable insights for network planners and designers. Additionally, the methodology and results presented herein can serve as a benchmark for future research endeavours aimed at enhancing the performance and reliability of FSO links in diverse geographical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.A. Al-Gailani et al., A survey of free space optics (FSO) communication systems, links, and networks, in IEEE Access, vol. 9, pp. 7353–7373 (2021). https://doi.org/10.1109/ACCESS.2020.3048049

  2. H. Singh, N. Mittal, R. Miglani, H. Singh, G.S. Gaba, M. Hedabou, Design and analysis of high-speed free space optical (FSO) communication system for supporting fifth generation (5G) data services in diverse geographical locations of India, in IEEE Photonics Journal, vol. 13, no. 5, pp. 1–12, Oct., Art no. 7300312 (2021). https://doi.org/10.1109/JPHOT.2021.3113650

  3. S.K. Mandal, B. Bera, G.G. Dutta, Free space optical (FSO) communication link design under adverse weather condition, 2020 International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, India, pp. 1–6 (2020). https://doi.org/10.1109/ICCECE48148.2020.9223023

  4. P. Singhal, P. Gupta, P. Rana, Basic concept of free space optics communication (FSO): An overview, 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, , pp. 0439–0442 (2015). https://doi.org/10.1109/ICCSP.2015.7322926

  5. A. Bekkali, H. Fujita, M. Hattori, New Generation Free-Space Optical Communication Systems with Advanced Optical Beam stabilizer. J. Lightwave Technol. 40(5), 1509–1518 (2022). https://doi.org/10.1109/JLT.2022.3146252

    Article  ADS  Google Scholar 

  6. M. Khan, M. Yuksel, Maintaining a free-space-optical communication link between two autonomous mobiles, 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, , pp. 3154–3159 (2014). https://doi.org/10.1109/WCNC.2014.6953020

  7. M. Singh, J. Malhotra, Enhanced performance of 40Gbit/s-80GHz OFDM based radio over FSO transmission link incorporating mode division multiplexing under strong atmospheric turbulence. Optoelectron. Adv. Mater. - Rapid Commun. 13, 7–8 (2019). July-August 2019

    Google Scholar 

  8. E.E. Elsayed, B.B. Yousif, M. Singh, Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence. Opt. Quant. Electron. 54, 116 (2022). https://doi.org/10.1007/s11082-021-03485-8

    Article  Google Scholar 

  9. P. Sivakumar, M. Singh, J. Malhotra et al., Performance analysis of 160 Gbit/s single-channel PDM-QPSK based inter-satellite optical wireless communication (IsOWC) system. Wirel. Netw. 26, 3579–3590 (2020). https://doi.org/10.1007/s11276-020-02287-2

    Article  Google Scholar 

  10. K. Singh, S. Chebaane, S. Ben Khalifa et al., Investigations on mode-division multiplexed free-space optical transmission for inter-satellite communication link. Wirel. Netw. 28, 1003–1016 (2022). https://doi.org/10.1007/s11276-022-02894-1

    Article  Google Scholar 

  11. S. Malathy, M. Singh, J. Malhotra et al., Modeling and performance investigation of 4×20 Gbps underwater optical wireless communication link incorporating space division multiplexing of Hermite Gaussian modes. Opt. Quant. Electron. 52, 256 (2020). https://doi.org/10.1007/s11082-020-02380-y

    Article  Google Scholar 

  12. B. Alexander, S. Felix, M. Igor, Practical applications of free-space optical underwater communication, 2021 Fifth Underwater Communications and Networking Conference (UComms), Lerici, Italy,, pp. 1–5 (2021). https://doi.org/10.1109/UComms50339.2021.9598053

  13. R.K. Sharma, H. Kaushal, P.K. Sharma, Analysis of indoor FSO link under diffused channel topology, International Conference on Computing, Communication & Automation, Greater Noida, India, , pp. 1268–1272 (2015). https://doi.org/10.1109/CCAA.2015.7148570

  14. R. Sharma, M. Aggarwal, S. Ahuja, Performance Analysis of Indoor FSO Communication Systems under Receiver Mobility, 2016 International Conference on Micro-Electronics and, T. Engineering, (ICMETE), Ghaziabad, India, pp. 652–657 (2016). https://doi.org/10.1109/ICMETE.2016.61

  15. S. Boobalan, S.A. Prakash, M. Angurala et al., Performance Enhancement of 3 × 20 Gbit/s MDM-Based OFDM-FSO System. Wirel. PersCommun. 122, 3137–3165 (2022). https://doi.org/10.1007/s11277-021-09044-4

    Article  Google Scholar 

  16. M.H. Mehtab Singh, A. Aly, Somia, Abd El-Mottaleb, performance analysis of 6 × 10 Gbps PDM-SAC-OCDMA-based FSO transmission using EDW codes with SPD detection, Optik, 264, 2022, 169415, https://doi.org/10.1016/j.ijleo.2022.169415

  17. P. Pesek, J. Bohata, S. Zvanovec, J. Perez, Analyses of dual polarization WDM and SCM Radio over Fiber and Radio over FSO for C-RAN architecture, 2016 25th Wireless and Optical Communication Conference (WOCC), Chengdu, China, 2016, pp. 1–4, https://doi.org/10.1109/WOCC.2016.7506564

  18. F. Hario, E. Maulana, S.H. Pramono, S.N. Sari, A.M. Al Junaedi, Design of OFDM-FSO Communication System on High Data Rate for Tropical Climate Region, 2019 International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 2019, pp. 74–78, https://doi.org/10.1109/ATC.2019.8924543

  19. H.H. Lu, X.H. Huang, C.Y. Li et al., Two-way free-space optics-based interface between fibre and 5G communication employing polarisation-orthogonal modulation. Commun. Eng. 2, 89 (2023). https://doi.org/10.1038/s44172-023-00148-2

    Article  Google Scholar 

  20. T., P., J., A.V.S. Real time experimental investigation of adaptive optics compensation technique for free space optical communication. Photon Netw. Commun. 44, 102–115 (2022). https://doi.org/10.1007/s11107-022-00973-z

  21. A. Shabaneh, M.L. Melhem, Performance comparison of implementing ASK and PPM modulations for free space optics system integrated with FBG device. J. Opt. (2024). https://doi.org/10.1007/s12596-024-01747-8

    Article  Google Scholar 

  22. V.M. Selvi, A. Samydurai, S. Vasuhi, The resilience of Hermite–Gaussian and orbital angular momentum modes for free space optical communication in atmospheric turbulence. J. Opt. (2024). https://doi.org/10.1007/s12596-024-01688-2

    Article  Google Scholar 

  23. M. Singh, A. Atieh, D. Kakati, 200 gbps free-space optics data transmission using orbital angular momentum multiplexed beams and PAM-4 signals. Opt. Quant. Electron. 55, 24 (2023). https://doi.org/10.1007/s11082-022-04310-6

    Article  Google Scholar 

  24. M. Singh, S.N. Pottoo, Suvidhi et al., A high-speed radio over free space optics transmission link under dust environment conditions employing hybrid wavelength- and mode-division multiplexing. Wirel. Netw. 27, 4875–4888 (2021). https://doi.org/10.1007/s11276-021-02774-0

    Article  Google Scholar 

  25. B. Dutta, B. Kuiri, S. Santra et al., Opt. Quant. Electron. 53, 515 (2021). https://doi.org/10.1007/s11082-021-03154-w. 100 Gbps Data Transmission Based on Different l-valued OAM Beam Multiplexing Employing WDM Techniques and Free Space Optics

  26. S. Jagdale, S.B. Deosarkar, S.L. Nalbalwar et al., Measurement, evaluation, and performance of 60 gbps DPSK WDM Free Space Optical Link for Haze and rain conditions. MAPAN. 38, 431–441 (2023). https://doi.org/10.1007/s12647-023-00622-4

    Article  Google Scholar 

  27. E.A. Fadil, A.K. Abass, S.R. Tahhan, Secure WDM-free space optical communication system based optical chaotic. Opt. Quant. Electron. 54, 477 (2022). https://doi.org/10.1007/s11082-022-03870-x

    Article  Google Scholar 

  28. E.E. Elsayed, Investigations on OFDM UAV-based free-space optical transmission system with scintillation mitigation for optical wireless communication-to-ground links in atmospheric turbulence. Opt. Quant. Electron. 56, 837 (2024). https://doi.org/10.1007/s11082-024-06692-1

    Article  Google Scholar 

  29. K. Sumathi, M. Balasaraswathi, C.S. Boopathi et al., Design of 3.84 tbps hybrid WDM–PDM based inter-satellite optical wireless communication (IsOWC) system using spectral efficient orthogonal modulation scheme. J. Ambient Intell. Hum. Comput. 11, 4167–4175 (2020). https://doi.org/10.1007/s12652-020-01691-y

    Article  Google Scholar 

  30. S. Arun Prakash, M.G. Sumithra, K. Shankar et al., Performance investigation of spectral-efficient high-speed inter-satellite optical wireless communication link incorporating polarization division multiplexing. Opt. Quant. Electron. 53, 270 (2021). https://doi.org/10.1007/s11082-021-02950-8

    Article  Google Scholar 

  31. M. Singh, J.A. Malhotra, High-Capacity, Single-Channel MDM-OFDM-IsOWC Transmission Link with Improved Detection. Wirel. Pers. Commun. 123, 1987–2010 (2022). https://doi.org/10.1007/s11277-021-09225-1

    Article  Google Scholar 

  32. M. Singh, A. Armghan, A. Atieh et al., High speed UOWC system using DP states with FRS-OCDMA code. Opt. Quant. Electron. 56, 714 (2024). https://doi.org/10.1007/s11082-024-06455-y

    Article  Google Scholar 

  33. S.A.A. El-Mottaleb, M. Singh, A. Atieh et al., Performance analysis of 3 × 10 Gb/s UOWC transmission system based on OCDMA using a DPS code. Opt. Quant. Electron. 56, 217 (2024). https://doi.org/10.1007/s11082-023-05815-4

    Article  Google Scholar 

  34. M. Singh, A. Atieh, G. Anand et al., Underwater optical wireless communication system based on dual polarization states with optical code division multiple access: performance evaluation. Opt. Quant. Electron. 56, 595 (2024). https://doi.org/10.1007/s11082-023-06192-8

    Article  ADS  Google Scholar 

  35. A. Somia, M. Abd El-Mottaleb, A. Singh, Atieh, H. Moustafa, Aly, Performance evaluation of a UOWC system based on the FRS/OCDMA code for different types of Jerlov waters. Appl. Opt. 63, 762–771 (2024)

    Article  ADS  Google Scholar 

  36. A. Elfikky, A.I. Boghdady, A.G. AbdElkader et al., Performance analysis of convolutional codes in dynamic underwater visible light communication systems. Opt. Quant. Electron. 56, 55 (2024). https://doi.org/10.1007/s11082-023-05325-3

    Article  ADS  Google Scholar 

  37. M. Singh, A. Atieh, M.H. Aly et al., Performance analysis for UOWC transmission system using NRZ, AMI, and CSRZ modulation schemes. Opt. Quant. Electron. 55, 1259 (2023). https://doi.org/10.1007/s11082-023-05559-1

    Article  Google Scholar 

  38. A. Mehtab Singh, M.H. Atieh, A. Aly, Somia, Abd El-Mottaleb, 120 gbps SAC-OCDMA-OAM-based FSO transmission system: performance evaluation under different weather conditions. Alexandria Eng. J. 61, 10407–10418 (2022). https://doi.org/10.1016/j.aej.2022.03.070

    Article  Google Scholar 

  39. E.E. Elsayed, A.G. Alharbi, M. Singh et al., Investigations on wavelength-division multiplexed fibre/FSO PON system employing DPPM scheme. Opt. Quant. Electron. 54, 358 (2022). https://doi.org/10.1007/s11082-022-03717-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Singh, H., Goyal, B. et al. Performance analysis of 160 Gbps single channel FSO transmission with integrated polarization division multiplexing-orthogonal frequency division multiplexing across various Indian cities. J Opt (2024). https://doi.org/10.1007/s12596-024-01856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01856-4

Keywords

Navigation