Skip to main content
Log in

Efficient production of methionine from 2-amino-4-methylthiobutanenitrile by recombinant Escherichia coli harboring nitrilase

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Methionine as an essential amino acid has been attracting more attention for its important applications in food and feed additives. In this study, for efficient production of methionine from 2-amino-4-methylthiobutanenitrile, a codon-optimized nitrilase gene was newly synthesized and expressed, and the catalytic conditions for methionine production were studied. The optimal temperature and pH for methionine synthesis were 40 °C and 7.5, respectively. The recombinant nitrilase was thermo-stable with half-life of 5.52 h at 40 °C. The substrate loading was optimized in given amount of catalyst and fixed substrate/catalyst ratio mode to achieve higher productivity. Methionine was produced in 100 % conversion within 120 min with a substrate loading of 300 mM. The production of methionine with the immobilized resting cells in packed-bed reactor was investigated. The immobilized nitrilase exhibited good operation stability and retained over 80 % of the initial activity after operating for 100 h. After separation, the purity and the total yield of methionine reached 99.1 and 97 %, respectively. This recombinant nitrilase could be a potential candidate for application in production of methionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali NM, Shakoori FR, Shakoore AR (2011) Improvement in methionine production by local bacterial isolates. Pak J Zool 43:611–614

    CAS  Google Scholar 

  2. Amalendu PR, Gomes J (2009) Simultaneous dissolved oxygen and glucose regulation in fed-batch methionine production using decoupled input-output linearizing control. J Process Contr 19:664–677

    Article  Google Scholar 

  3. Ariagno A, Bontoux MC, Olivier FB, Largeau D (1998) Enzymatic hydrolysis of racemic a-substituted 4-methylthiobutyronitriles using a nitrilase from Alcaligenes faecalis, Gordona terrae or Rhodococcus sp. US Patent 5814497

  4. Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  5. Chauhan S, Wu S, Blumerman S, Fallon RD, Gavagan JE, DiCosimo R, Payne MS (2003) Purification, cloning, sequencing and over-expression in Escherichia coli of a regioselective aliphatic nitrilase from Acidovorax facilis 72 W. Appl Microbiol Biotechnol 61:118–122

    Article  CAS  PubMed  Google Scholar 

  6. Gomes J, Kumar D (2005) Production of l-methionine by submerged fermentation: a review. Enzyme Microb Technol 37:3–18

    Article  CAS  Google Scholar 

  7. Kalhan SC, Marczewski SE (2012) Methionine, homocysteine one carbon metabolism and fetal growth. Rev Endocr Metab Dis 13:109–119

    Article  CAS  Google Scholar 

  8. Kobayashi Y, Ono I, Hayakawa K, Mizul R, Ishikawa T (2003) Process for the production of methionine. US Patent 20050176115

  9. Korendyaseva TK, Martinov MV, Dudchenko AM, Vitvitsky VM (2010) Distribution of methionine between cells and incubation medium in suspension of rat hepatocytes. Amino Acids 39(5):1281–1289

    Article  CAS  PubMed  Google Scholar 

  10. Kromer JO, Wittmann C, Schroder H, Heinzle E (2006) Metabolic pathway analysis for rational design of l-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8:353–369

    Article  PubMed  Google Scholar 

  11. Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23:41–61

    Article  CAS  PubMed  Google Scholar 

  12. Liu ZQ, Dong LZ, Cheng F, Xue YP, Wang YS, Ding JN, Zheng YG, Shen YC (2011) Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. J Agr Food Chem 59:11560–11570

    Article  CAS  Google Scholar 

  13. Liu ZQ, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK (2009) Structural and functional studies of Aspergillus oryzae Cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131:15711–157116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu ZQ, Zhou M, Zhang XH, Xu JM, Xue YP, Zheng YG (2012) Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. J Mol Microbiol Biotechnol 22:35–47

    Article  PubMed  Google Scholar 

  15. Martinkova L, Mylerova V (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7:1279–1295

    Article  CAS  Google Scholar 

  16. Mondal S, Das YB, Chatterjee SP (1996) Methionine production by microorganisms. Folia Microbiol 41:465–472

    Article  CAS  Google Scholar 

  17. Olivier FB, Pierrard J, David C, Moral P, Horbez D (2001) Industrial scale process for the preparation of 2-hydroxy-4-methylbutyric acid using a nitrilase. US Patent 6180359

  18. Park SD, Lee JY, Sim SY, Kim Y, Lee HS (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9(4):327–336

    Article  CAS  PubMed  Google Scholar 

  19. Rey P, Rossi JC, Taillades J, Gros G, Nore O (2004) Hydrolysis of nitriles using an immobilized nitrilase: applications to the synthesis of methionine hydroxy analogue derivatives. J Agric Food Chem 52:8155–8162

    Article  CAS  PubMed  Google Scholar 

  20. Shama NN, Sharma M, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  Google Scholar 

  21. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wu S, Fogiel AJ, Petrillo KL, Hann EC, Mersinger LJ, DiCosimo R, O’Keefe DP, Ben-Bassat A, Payne MS (2007) Protein engineering of Acidovorax facilis 72 W nitrilase for bioprocess development. Biotechnol Bioeng 97:689–693

    Article  CAS  PubMed  Google Scholar 

  23. Xue YP, Jiang T, Liu X, Zheng YG (2013) Efficient production of S-(+)-2-chlorophenylglycine by immobilized penicillin G acylase in a recirculating packed bed reactor. Biochem Eng J 74:88–94

    Article  CAS  Google Scholar 

  24. Xue YP, Xu SZ, Liu ZQ, Zheng YG, Shen YC (2011) Enantioselective biocatalytic hydrolysis of (R, S)-mandelonitrile for production of (R)-(-)-mandelic acid by a newly isolated mutant strain. J Ind Microbiol Biotechnol 38:337–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21202150), the Research Program of Science and Technology Department of Zhejiang Province (No. 2011R09043-07) and Natural Science Foundation of Zhejiang Province (No. R3110155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, LQ., Li, ZT., Liu, ZQ. et al. Efficient production of methionine from 2-amino-4-methylthiobutanenitrile by recombinant Escherichia coli harboring nitrilase. J Ind Microbiol Biotechnol 41, 1479–1486 (2014). https://doi.org/10.1007/s10295-014-1490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1490-8

Keywords

Navigation