Skip to main content
Log in

An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Nitrilase of Nocardia globerula NHB-2 was induced by short-chain aliphatic nitriles (valeronitrile > isobutyronitrile > butyronitrile > propionitrile) and exhibited activity towards aromatic nitriles (benzonitrile > 3-cyanopyridine > 4-cyanopyridine > m-tolunitrile > p-tolunitrile). Hyperinduction of nitrilase (6.67 U mg −1DCW , 18.7 U mL−1) was achieved in short incubation time (30 h, 30°C) through multiple feeding of isobutyronitrile in the growth medium. The nitrilase of this organism exhibits both substrate and product inhibition effects. In a fed batch reaction at 1 L scale using hyperinduced resting cells corresponding to 10 U mL−1 nitrilase activity (1.5 mgDCW mL−1), a total of 123.11 g nicotinic acid was produced at a rate of 24 g h−1 g −1DCW .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almatawah QA, Cowan DA (1999) Thermostable nitrilase catalysed production of nicotinic acid from 3-cyanopyridine. Enz Microb Technol 25:718–724

    Article  CAS  Google Scholar 

  2. Bhalla TC, Kumar H (2005) Nocardia globerula NHB-2: a versatile nitrile-degrading organism. Can J Microbiol 51:705–708

    Article  PubMed  CAS  Google Scholar 

  3. Breuer M, Ditrich K, Habicher T, Hauer B, Keβeler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angewandte Chemie Int Ed 43:788–824

    Article  CAS  Google Scholar 

  4. Bunch AW (1998) Biotransformation of nitriles by Rhodococci. Antonie Van Leeuwenhoek 74:89–97

    Article  PubMed  CAS  Google Scholar 

  5. Chuck R (2005) Technology development in nicotinate production. Appl Catal A Gen 280:75–82

    Article  CAS  Google Scholar 

  6. Copeland RA (2000) Enzymes, 2nd edn. Wiley, New York

    Book  Google Scholar 

  7. DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J Am Chem Soc 125:11476–11477

    Article  PubMed  CAS  Google Scholar 

  8. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  PubMed  CAS  Google Scholar 

  9. Hatanaka M, Tanaka N (1993) World Patent 93.5022 A1, March 18, 1993

  10. Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, Martínková L (2006) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bact 172:4807–4815

    PubMed  CAS  Google Scholar 

  12. Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1991) Hpyerinduction of an aliphatic nitrilase by Rhodococcus rhodochrous K22. FEMS Microbiol Lett 77:121–124

    Article  CAS  Google Scholar 

  13. Mathew CD, Nagasawa T, Kobayashi M, Yamada H (1988) Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous JI. Appl Microbiol Biotechnol 54:1030–1032

    CAS  Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  15. Nagasawa T, Mathew CD, Mauger J, Yamada H (1988) Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Env Microbiol 54:166–169

    Google Scholar 

  16. Nagasawa T, Nakamura T, Yamada H (1988) Optimum culture conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. Arch Micobiol 150:89–94

    Article  CAS  Google Scholar 

  17. Nagasawa T, Nakamura T, Yamada H (1990) ε-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Micobiol 155:13–17

    Article  CAS  Google Scholar 

  18. Nagasawa T, Shimizu H, Yamada H (1993) Superiority of the third generation catalyst Rhodococcus rhodochrous J1 nitrile hydratase for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195

    Article  CAS  Google Scholar 

  19. O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes–a comparative study. J Appl Microbiol 95:1161–1174

    Article  PubMed  Google Scholar 

  20. Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:1–9

    Article  Google Scholar 

  21. Prasad S, Raj J, Bhalla TC (2007) Bench scale conversion of 3-cyanopyridine to nicotinamide using resting cells of Rhodococcus rhodochrous PA-34. Ind J Microbiol 47:34–41

    Article  CAS  Google Scholar 

  22. Raj J, Prasad S, Bhalla TC (2006) Rhodococcus rhodochrous PA-34: a potential biocatalyst for acrylamide synthesis. Process Biochem 41:1359–1363

    Article  CAS  Google Scholar 

  23. Sharma NN, Sharma M, Kumar H, Bhalla TC (2006) Nocardia globerula NHB-2: bench scale production of nicotinic acid. Process Biochem 41:2078–2081

    Article  CAS  Google Scholar 

  24. Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  25. Toomey Jr JE (1984) United States Patent 4,482,439 A, November 13, 1984

  26. Vaughan PA, Knowles CJ, Cheetham PSJ (1989) Conversion of 3-cyanopyridine to nicotinic acid by Nocardia rhodococcus LL100–21. Enzym Microb Technol 11:815–823

    Article  CAS  Google Scholar 

  27. Wang M-X (2005) Enantioselective biotransformations of nitriles in organic synthesis. Topic Catal 35:117–130

    Article  Google Scholar 

  28. Weissermel K, Arpe H-J (1997) Industrial organic chemistry, 3rd edn. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  29. Wu S, Fogiel AJ, Petrillo KL, Hann EC, Mersinger LJ, DiCosimo R, O’Keefe DP, Ben-Bassat A, Payne MS (2007) Protein engineering of Acidovorax facilis 72 W nitrilase for bioprocess development. Biotechnol Bioeng 97:689–693

    Article  PubMed  CAS  Google Scholar 

  30. Wu S, Fogiel AJ, Petrillo KL, Jackson JE, Parker KN, DiCosimo R, O’Keefe DP, Ben-Bassat A, O’Keefe DP, Payne MS (2008) Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol Bioeng 99:717–720

    Article  PubMed  CAS  Google Scholar 

  31. Yamada H (1992) New biocatalytic functions of microorganisms and their industrial applications. Biochem Eng 2001:14–17

    Google Scholar 

  32. Yeom S-J, Kim H-J, Lee J-K, Kim D-E, Oh D-K (2008) An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochem J 415:401–407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Council of Scientific and Industrial Research, New Delhi for financial support in the form of Senior Research Fellowship to Mr Nitya Nand Sharma and Ms Monica Sharma. The computational facility availed at Bioinformatics Centre, H P University is also duly acknowledged. The authors also thank Jubilant Organosis (India) for the gift of 3-CP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N.N., Sharma, M. & Bhalla, T.C. An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38, 1235–1243 (2011). https://doi.org/10.1007/s10295-010-0902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0902-7

Keywords

Navigation