Skip to main content
Log in

Distribution of methionine between cells and incubation medium in suspension of rat hepatocytes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Methionine is an essential amino acid involved in many significant intracellular processes. Aberrations in methionine metabolism are associated with a number of complex pathologies. Liver plays a key role in regulation of blood methionine level. Investigation of methionine distribution between hepatocytes and medium is crucial for understanding the mechanisms of this regulation. For the first time, we analyzed the distribution of methionine between hepatocytes and incubation medium using direct measurements of methionine concentrations. Our results revealed a fast and reversible transport of methionine through the cell membrane that provides almost uniform distribution of methionine between hepatocytes and incubation medium. The steady-state ratio between intracellular and extracellular methionine concentrations was established within a few minutes. This ratio was found to be 1.06 ± 0.38, 0.89 ± 0.26, 0.67 ± 0.16 and 0.82 ± 0.06 at methionine concentrations in the medium of 64 ± 19, 152 ± 39, 413 ± 55, and 1,204 ± 104 μmol/L, respectively. The fast and uniform distribution of methionine between hepatocytes and extracellular compartments provides a possibility for effective regulation of blood methionine levels due to methionine metabolism in hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332

    CAS  PubMed  Google Scholar 

  • Aw TY, Ookhtens M, Kaplowitz N (1986) Mechanism of inhibition of glutathione efflux by methionine from isolated rat hepatocytes. Am J Physiol 251:G354–G361

    CAS  PubMed  Google Scholar 

  • Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, Jutabha P, Li Y, Ahmed N, Sakamoto S, Anzai N, Nagamori S, Endou H (2003) Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278:43838–43845

    Article  CAS  PubMed  Google Scholar 

  • Beaudin AE, Stover PJ (2009) Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol 85:274–284

    Article  CAS  PubMed  Google Scholar 

  • Bodoy S, Martin L, Zorzano A, Palacin M, Estevez R, Bertran J (2005) Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem 280:12002–12011

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, Thomas J, Pao VY, Nguyen TK, Levy HL, Greene C, Freehauf C, Chou JY (2000) Methionine adenosyltransferase I/III deficiency: novel mutations and clinical variations. Am J Hum Genet 66:347–355

    Article  CAS  PubMed  Google Scholar 

  • Christie GR, Hyde R, Hundal HS (2001) Regulation of amino acid transporters by amino acid availability. Curr Opin Clin Nutr Metab Care 4:425–431

    Article  CAS  PubMed  Google Scholar 

  • del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of l-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174

    Article  CAS  PubMed  Google Scholar 

  • Fariss MW, Brown MK, Schmitz JA, Reed DJ (1985) Mechanism of chemical-induced toxicity I. Use of a rapid centrifugation technique for the separation of viable and nonviable hepatocytes. Toxicol Appl Pharmacol 79:283–295

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD, Martin JJ (1986) Methionine metabolism in mammals Adaptation to methionine excess. J Biol Chem 261:1582–1587

    CAS  PubMed  Google Scholar 

  • Finkelstein JD, Kyle WE, Harris BJ, Martin JJ (1982) Methionine metabolism in mammals: concentration of metabolites in rat tissues. J Nutr 112:1011–1018

    CAS  PubMed  Google Scholar 

  • Forslund AH, Hambraeus L, van BH, Holmback U, El-Khoury AE, Hjorth G, Olsson R, Stridsberg M, Wide L, Akerfeldt T, Regan M, Young VR (2000) Inverse relationship between protein intake and plasma free amino acids in healthy men at physical exercise. Am J Physiol Endocrinol Metab 278:E857–E867

    CAS  PubMed  Google Scholar 

  • Fukuhara D, Kanai Y, Chairoungdua A, Babu E, Bessho F, Kawano T, Akimoto Y, Endou H, Yan K (2007) Protein characterization of NA+-independent system l amino acid transporter 3 in mice: a potential role in supply of branched-chain amino acids under nutrient starvation. Am J Pathol 170:888–898

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kuhnisch J, Mustafa A, Lhotak S, Schlachterman A, Slifker MJ, Klein-Szanto A, High KA, Austin RC, Kruger WD (2009) Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. FASEB J 23:883–893

    Article  CAS  PubMed  Google Scholar 

  • Guttormsen AB, Solheim E, Refsum H (2004) Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am J Clin Nutr 79:76–79

    CAS  PubMed  Google Scholar 

  • Hatanaka T, Huang W, Ling R, Prasad PD, Sugawara M, Leibach FH, Ganapathy V (2001) Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A. Biochim Biophys Acta 1510:10–17

    Article  CAS  PubMed  Google Scholar 

  • Jacobs RL, Stead LM, Brosnan ME, Brosnan JT (2001) Hyperglucagonemia in rats results in decreased plasma homocysteine and increased flux through the transsulfuration pathway in liver. J Biol Chem 276:43740–43747

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Tateno C, Asahara T, Yoshizato K (2001) Size-dependent in vivo growth potential of adult rat hepatocytes. Am J Pathol 158:97–105

    CAS  PubMed  Google Scholar 

  • Kilberg MS, Handlogten ME, Christensen HN (1981) Characteristics of system ASC for transport of neutral amino acids in the isolated rat hepatocyte. J Biol Chem 256:3304–3312

    CAS  PubMed  Google Scholar 

  • Korendyaseva TK, Kuvatov DN, Volkov VA, Martinov MV, Vitvitsky VM, Banerjee R, Ataullakhanov FI (2008) An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. PLoS Comput Biol 4:e1000076

    Google Scholar 

  • Krebs HA, Cornell N, Lund P, Hems R (1974) Isolated liver cells as experimental material. In: Lundquist F, Tygstrup N (eds) Regulation of hepatic metabolism. Academic Press Inc, New York, pp 726–750

    Google Scholar 

  • Lu SC, Alvarez L, Huang Z-Z, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA 98:5560–5565

    Article  CAS  PubMed  Google Scholar 

  • Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F (2007) Homocysteine and Parkinson’s disease: a dangerous liaison? J Neurol Sci 257:31–37

    Article  CAS  PubMed  Google Scholar 

  • Martinov MV, Vitvitsky VM, Mosharov EV, Banerjee R, Ataullakhanov FI (2000) A substrate switch: a new mode of regulation in the methionine metabolic pathway. J Theor Biol 204:521–532

    Article  CAS  PubMed  Google Scholar 

  • Martinov MV, Vitvitsky VM, Banerjee R, Ataullakhanov FI (2010) The logic of the hepatic methionine metabolic cycle. Biochim Biophys Acta 1804:89–96

    CAS  PubMed  Google Scholar 

  • Mato JM, Martinez-Chantar ML, Lu SC (2008) Methionine metabolism and liver disease. Annu Rev Nutr 28:273–293

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Ebert MH, Scriver CR (1980) Labile methyl group balances in the human: the role of sarcosine. Metabolism 29:707–720

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Cerone R, Schiaffino MC, Fantasia AR, Minniti G, Caruso U, Lorini R, Watkins D, Matiaszuk N, Rosenblatt DS, Schwahn B, Rozen R, LeGros L, Kotb M, Capdevila A, Luka Z, Finkelstein JD, Tangerman A, Stabler SP, Allen RH, Wagner C (2001) Glycine N-methyltransferase deficiency: a novel inborn error causing persistent isolated hypermethioninaemia. J Inherit Metab Dis 24:448–464

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF, Reed MC, Anderson DF, Mattingly JC, James SJ, Ulrich CM (2006) Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate. Epigenetics 1:81–87

    Article  PubMed  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    CAS  PubMed  Google Scholar 

  • Prudova A, Martinov MV, Vitvitsky VM, Ataullakhanov FI, Banerjee R (2005) Analysis of pathological defects in methionine metabolism using a simple mathematical model. Biochim Biophys Acta 1741:331–338

    CAS  PubMed  Google Scholar 

  • Rao AM, Drake MR, Stipanuk MH (1990) Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes. J Nutr 120:837–845

    CAS  PubMed  Google Scholar 

  • Reed MC, Nijhout HF, Sparks R, Ulrich CM (2004) A mathematical model of the methionine cycle. J Theor Biol 226:33–43

    Article  CAS  PubMed  Google Scholar 

  • Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kuhn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954

    Article  CAS  PubMed  Google Scholar 

  • Schreiber G, Schreiber M (1972) Protein synthesis in single cell suspensions from rat liver. I. General properties of the system and permeability of the cells for leucine and methionine. J Biol Chem 247:6340–6346

    CAS  PubMed  Google Scholar 

  • Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadano-Ferraz A, Fremeau RT Jr (1993) Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268:15351–15355

    CAS  PubMed  Google Scholar 

  • Shinohara Y, Hasegawa H, Ogawa K, Tagoku K, Hashimoto T (2006) Distinct effects of folate and choline deficiency on plasma kinetics of methionine and homocysteine in rats. Metabolism 55:899–906

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Nakanishi T, Fei Y-J, Huang W, Ganapathy ME, Leibach FH, Ganapathy V (2000a) Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 275:16473–16477

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Nakanishi T, Fei YJ, Martindale RG, Ganapathy ME, Leibach FH, Ganapathy V (2000b) Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta 1509:7–13

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Yamamoto A, Fujita T (2005) Functional expression and adaptive regulation of Na+-dependent neutral amino acid transporter SNAT2/ATA2 in normal human astrocytes under amino acid starved condition. Neurosci Lett 378:70–75

    Article  CAS  PubMed  Google Scholar 

  • Tchantchou F, Shea TB (2008) Folate deprivation, the methionine cycle, and Alzheimer’s disease. Vitam Horm 79:83–97

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281:C1077–C1093

    CAS  PubMed  Google Scholar 

  • Weissbach L, Handlogten ME, Christensen HN, Kilberg MS (1982) Evidence for two Na+-independent neutral amino acid transport systems in primary cultures of rat hepatocytes Time-dependent changes in activity. J Biol Chem 257:12006–12011

    CAS  PubMed  Google Scholar 

  • Yamada Y, Ichihara S, Nishida T (2008) Molecular genetics of myocardial infarction. Genomic Med 2:7–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Vitvitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korendyaseva, T.K., Martinov, M.V., Dudchenko, A.M. et al. Distribution of methionine between cells and incubation medium in suspension of rat hepatocytes. Amino Acids 39, 1281–1289 (2010). https://doi.org/10.1007/s00726-010-0563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0563-x

Keywords

Navigation