Skip to main content
Log in

Efficient expression of a Paenibacillus barcinonensis endoglucanase in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The endoglucanase coded by celA (GenBank Access No. Y12512) from Paenibacillus barcinonensis, an enzyme with good characteristics for application on paper manufacture from agricultural fibers, was expressed in Saccharomyces cerevisiae by using different domains of the cell wall protein Pir4 as translational fusion partners, to achieve either secretion or cell wall retention of the recombinant enzyme. Given the presence of five potential N-glycosylation sites in the amino acid sequence coded by celA, the effect of glycosylation on the enzymatic activity of the recombinant enzyme was investigated by expressing the recombinant fusion proteins in both, standard and glycosylation-deficient strains of S. cerevisiae. Correct targeting of the recombinant fusion proteins was confirmed by Western immunoblot using Pir-specific antibodies, while enzymatic activity on carboxymethyl cellulose was demonstrated on plate assays, zymographic analysis and colorimetric assays. Hyperglycosylation of the enzyme when expressed in the standard strain of S. cerevisiae did not affect activity, and values of 1.2 U/ml were obtained in growth medium supernatants in ordinary batch cultures after 24 h. These values compare quite favorably with those described for other recombinant endoglucanases expressed in S. cerevisiae. This is one of the few reports describing the expression of Bacillus cellulases in S. cerevisiae, since yeast expressed recombinant cellulases have been mostly of fungal origin. It is also the first report of the yeast expression of this particular endoglucanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrés I, Zueco J, Parascandola P (2003) Immobilization of Saccharomyces cerevisiae cells to protein G-sepharose by cell wall engineering. J Mol Microbiol Biotechnol 5:161–166

    Article  PubMed  Google Scholar 

  2. Andrés I, Gallardo O, Parascandola P, Pastor FIJ, Zueco J (2005) Use of cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP-7 xylanase A in Saccharomyces cerevisiae. Biotech Bioeng 89:690–697

    Article  Google Scholar 

  3. Andrés I, Rodríguez-Díaz J, Buesa J, Zueco J (2006) Yeast expression of the VP8* fragment of the rotavirus spike protein and its use as immunogen in mice. Biotechnol Bioeng 93:89–98

    Article  PubMed  Google Scholar 

  4. Bamforth C (1994) β-glucan and β-glucanases in malting and brewing: practical aspects. Brew Dig 69:12–16

    Google Scholar 

  5. Bayer EA, Shoham Y, Lamed R (2006) Cellulose decomposing bacteria and their enzyme systems. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 578–617

    Chapter  Google Scholar 

  6. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  7. Benitez J, Silva A, Vazquez R, Noa MD, Hollenberg CP (1989) Secretion and glycosylation of Clostridium thermocellum endoglucanase A encoded by the celA gene in Saccharomyces cerevisiae. Yeast 5:299–306

    Article  PubMed  CAS  Google Scholar 

  8. Blanco A, Vidal T, Colom JF, Pastor FI (1995) Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23. Appl Environ Microbiol 61:4468–4470

    PubMed  CAS  Google Scholar 

  9. Blanco A, Díaz P, Martínez J, Vidal T, Torres AL, Pastor FI (1998) Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Appl Microbiol Biotechnol 50:48–54

    Article  PubMed  CAS  Google Scholar 

  10. Blanco A, Díaz P, Zueco J, Parascandola P, Javier Pastor FI (1999) A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145:2163–2170

    Article  PubMed  CAS  Google Scholar 

  11. Burnette WN (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl-sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  12. Cebollero E, Gonzalez-Ramos D, Tabera L, Gonzalez R (2007) Transgenic wine yeast technology comes of age: is it time for transgenic wine? Biotechnol Lett 29:191–200

    Article  PubMed  CAS  Google Scholar 

  13. Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Pastor FI (2010) Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 86:1125–1134

    Article  PubMed  CAS  Google Scholar 

  14. Cho KM, Yoo YJ (1999) Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, Saccharomyces cerevisiae L2612δGC. J Microbiol Biotechnol 9:340–345

    CAS  Google Scholar 

  15. Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Article  Google Scholar 

  16. Plessis Du, Rose SH, van Zyl H (2010) Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 86:1503–1511

    Article  PubMed  CAS  Google Scholar 

  17. Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  PubMed  CAS  Google Scholar 

  18. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  PubMed  CAS  Google Scholar 

  19. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473

    Article  PubMed  CAS  Google Scholar 

  20. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vector constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  PubMed  CAS  Google Scholar 

  21. Guo Q, Zhang W, Ma L, Chen Q, Chen J, Zhang H, Ruan H, He G (2010) A food-grade industrial arming yeast expressing β-1, 3–1, 4-glucanase with enhanced thermal stability. J Zhejiang Univ Sci B 11:41–51

    Article  PubMed  CAS  Google Scholar 

  22. Hernandez LM, Ballou L, Alvarado E, Gillece-Castro BL, Burlingame AL, Ballou CE (1989) A new Saccharomyces cerevisiae mnn mutant N-linked oligosaccharide structure. J Biol Chem 246:11846–11856

    Google Scholar 

  23. Hinchliffe E, Box WG (1984) Expression of the cloned endo-1, 3–1, 4-β-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae. Curr Genet 8:471–475

    Article  CAS  Google Scholar 

  24. Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO (2010) Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiol Lett 310:39–47

    Article  PubMed  CAS  Google Scholar 

  25. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  26. Kotaka A, Sahara H, Hata Y, Abe Y, Kondo A, Kato-Murai M, Kuroda K, Ueda M (2008) Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Biosci Biotechnol Biochem 72:1376–1379

    Article  PubMed  CAS  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the head assembly of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  28. Lee JH, Lim MY, Kim MJ, Heo SY, Seo JH, Kim YH, Nam SW (2007) Constitutive coexpression of Bacillus endoxylanase and Trichoderma endoglucanase genes in Saccharomyces cerevisiae. J Microbiol Biotechnol 17:2076–2080

    PubMed  CAS  Google Scholar 

  29. Lilly M, Fierobe HP, van Zyl WH, Volschenk H (2009) Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 9:1236–1249

    Article  PubMed  CAS  Google Scholar 

  30. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  PubMed  CAS  Google Scholar 

  31. Louw C, La Grange D, Pretorius IS, van Rensburg P (2006) The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour. J Biotechnol 125:447–461

    Article  PubMed  CAS  Google Scholar 

  32. Lu Y, Wang TH, Ding XL (2009) Induction of production and secretion β(1–4) glucanase with Saccharomyces cerevisiae by replacing the MET10 gene with egl1 gene from Trichoderma reesei. Letters Appl Microbiol 49:702–707

    Article  CAS  Google Scholar 

  33. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  34. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  35. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  PubMed  CAS  Google Scholar 

  36. Mormeneo M, Andrés I, Bofill C, Díaz P, Zueco J (2008) Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Appl Microbiol Biotechnol 80:437–445

    Article  PubMed  CAS  Google Scholar 

  37. Moukadiri I, Jaafar L, Zueco J (1999) Identification of two mannoproteins released from cell walls of a Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents. J Bacteriol 181:4741–4745

    PubMed  CAS  Google Scholar 

  38. Moukadiri I, Zueco J (2001) Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges. FEMS Yeast Res 1:241–245

    PubMed  CAS  Google Scholar 

  39. Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A (1997) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503

    Article  PubMed  CAS  Google Scholar 

  40. Paciello L, de Alteriis E, Mazzoni C, Palermo V, Zueco J, Parascandola P (2009) Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability and maintenance energy. Microbial Cell Factories 8:70

    Google Scholar 

  41. Paciello L, Andrés I, Zueco J, Bianchi MM, de Alteriis E, Parascandola P (2010) Expression of human interleukin-1β in Saccharomyces cerevisiae using PIR4 as fusion partner and production in aereated fed-batch reactor. Ann Microbiol 60:719–728

    Article  CAS  Google Scholar 

  42. Park S, Xu Y, Stowell XF, Gai F, Saven JG, Boder ET (2006) Limitations of yeast surface display in engineering proteins of high thermostability. Protein Eng Des Sel 19:211–217

    Article  PubMed  CAS  Google Scholar 

  43. Pastor FI, Pujol X, Blanco A, Vidal T, Torres AL, Díaz P (2001) Molecular cloning and characterization of a multidomain endoglucanase from Paenibacillus sp BP-23: evaluation of its performance in pulp refining. Appl Microbiol Biotechnol 55:61–68

    Article  PubMed  CAS  Google Scholar 

  44. Picart P, Diaz P, Pastor FI (2007) Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett Appl Microbiol 45:108–113

    Article  PubMed  CAS  Google Scholar 

  45. Qin Y, Wei X, Liu X, Wang T, Qu Y (2008) Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr Purif 58:162–167

    Article  PubMed  CAS  Google Scholar 

  46. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  47. Sánchez MM, Pastor FI, Diaz P (2003) Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. A unique type of cellulase among Bacillales. Eur J Biochem 270:2913–2919

    Article  PubMed  Google Scholar 

  48. Sánchez MM, Fritze D, Blanco A, Spröer C, Tindall BJ, Schumann P, Kroppenstedt RM, Diaz P, Pastor FI (2005) Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55:935–939

    Article  PubMed  Google Scholar 

  49. Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68:292–304

    Article  PubMed  CAS  Google Scholar 

  50. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956

    Article  PubMed  CAS  Google Scholar 

  51. Skipper N, Sutherland M, Davies RW, Kilburn D, Miller RC Jr, Warren A, Wong R (1985) Secretion of a bacterial cellulase by yeast. Science 230:958–960

    Article  PubMed  CAS  Google Scholar 

  52. Spiro RG (1966) The Nelson-Somogyi copper reduction method. Analysis of sugars found in glycoprotein. Method Enzymol 8:3–26

    Article  CAS  Google Scholar 

  53. Strauss MLA, Jolly NP, Lambechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeast. J Appl Microbiol 91:182–190

    Article  PubMed  CAS  Google Scholar 

  54. Tanino T, Fukuda H, Kondo A (2006) Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol Progr 22:989–993

    Article  CAS  Google Scholar 

  55. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  56. Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolase. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  57. Toda H, Takada S, Oda M, Amano Y, Kanda T, Okazaki M, Shimosaka M (2005) Gene cloning of an endoglucanase from the basidiomycete Irpex lacteus and its cDNA expression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69:1262–1269

    Article  PubMed  CAS  Google Scholar 

  58. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  59. van Rensburg P, van Zyl WH, Pretorius IS (1994) Expression of the Butyrivibrio fibrisolvens endo-beta-1, 4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae. Curr Genet 27:17–22

    Article  PubMed  Google Scholar 

  60. van Rensburg P, van Zyl WH, Pretorius IS (1996) Co-expression of a Phanerochaete chrysosporium cellobiohydrolase gene and a Butyrivibrio fibrisolvens endo-beta-1, 4-glucanase gene in Saccharomyces cerevisiae. Curr Genet 30:246–250

    Article  PubMed  Google Scholar 

  61. van Rensburg P, Strauss ML, Lambrechts MG, Cordero Otero RR, Pretorius IS (2007) The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. J Appl Microbiol 103:2248–2257

    Article  PubMed  Google Scholar 

  62. van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    PubMed  Google Scholar 

  63. Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    Article  PubMed  CAS  Google Scholar 

  64. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  PubMed  CAS  Google Scholar 

  65. Zhu H, Yao S, Wang S (2010) MF α signal peptide enhances the expression of cellulase eg1 gene in yeast. Appl Biochem Biotechnol 162:617–624

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant ISCIII2006-PI0731 from the Ministerio de Sanidad/Instituto de la Salud Carlos III (Spain). María Mormeneo was a recipient of a pre-doctoral grant from the Programa Nacional de Formación de Profesorado Universitario del Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Zueco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mormeneo, M., Pastor, F.J. & Zueco, J. Efficient expression of a Paenibacillus barcinonensis endoglucanase in Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 39, 115–123 (2012). https://doi.org/10.1007/s10295-011-1006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1006-8

Keywords

Navigation