Skip to main content
Log in

Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The endoglucanase I and II genes (egI or Cel7B and egII or Cel5A) of Trichoderma reesei QM6a were successfully cloned and expressed in Saccharomyces cerevisiae under the transcriptional control of the yeast ENO1 promoter and terminator sequences. Random mutagenesis of the egI-bearing plasmid resulted in a twofold increase in extracellular EGI activity. Both endoglucanase genes were co-expressed with the synthetic, codon-optimised cellobiohydrolase gene (s-cbhI) from T. reesei as well as the β-glucosidase gene (bgl1) from Saccharomycopsis fibuligera in S. cerevisiae. Extracellular endoglucanase activity was lower when co-expressed with s-cbhI or bgl1. Recombinant strains were able to hydrolyse phosphoric acid swollen cellulose, generating mainly cellotriose, cellobiose and glucose. Cellobiose accumulated, suggesting the β-glucosidase activity to be the rate-limiting factor. As a consequence, the recombinant strains were unable to produce enough glucose for growth on amorphous cellulose. The results of this study provide insight into further optimisation of recombinantly expressed cellulase combinations for saccharification and fermentation of cellulose to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agbogbo F, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524

    Article  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Bailey MJ, Siika-aho M, Valkeajärvi A, Penttilä ME (1993) Hydrolytic properties of two cellulases of Trichoderma reesei expressed in yeast. Biotechnol Appl Biochem 17:65–76

    CAS  Google Scholar 

  • Den Haan R, McBride J, La Grange DC, Lynd LR, Van Zyl WH (2007a) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299

    Article  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, Van Zyl WH (2007b) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Article  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  • Gruno M, Väljamäe P, Pettersson G, Johansson G (2003) Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86:503–511

    Article  Google Scholar 

  • Hill J, Ian KA, Donald G, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791

    Article  CAS  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:167–272

    Article  Google Scholar 

  • Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99:63–78

    Article  CAS  Google Scholar 

  • Kern L, de Montigny J, Jund R, Lacroute F (1990) The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 88:149–157

    Article  CAS  Google Scholar 

  • Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK (1996) The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62:2883–2887

    CAS  Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:5

    Article  Google Scholar 

  • La Grange DC, Pretorius IS, Van Zyl WH (1996) Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    Google Scholar 

  • La Grange DC, Claeyssens IM, Pretorius IS, Van Zyl WH (2001) Degradation of xylan to d-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519

    Article  Google Scholar 

  • Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G (1995) The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett 372:96–98

    Article  CAS  Google Scholar 

  • Linder M, Nevanen T, Teeri TT (1999) Design of a pH-dependent cellulose-binding domain. FEBS Lett 447:13–16

    Article  CAS  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Mattinen M-L, Linder M, Drakenberg T, Annila A (1998) Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. Eur J Biochem 256:279–286

    Article  CAS  Google Scholar 

  • McBride JE, Zietsman JJ, Van Zyl WH, Lynd LR (2005) Utilization of cellobiose by recombinant β-glucosidase-expressing strains of Saccharomyces cerevisiae: characterization and evaluation of the sufficiency of expression. Enzyme Microb Technol 37:93–101

    Article  CAS  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621–634

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Okada H, Tada K, Sekiya T, Yokoyama K, Takahashi A, Tohda H, Kumagai H, Morikawa Y (1998) Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl Environ Microbiol 64:555–563

    CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa

    Google Scholar 

  • Rubin-Pitel SB, Cho CM-H, Chen W, Zhao H (2006) Directed evolution tools in bioproduct and bioprocess development. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources: new technologies and applications. Elsevier Science, New York

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Woodward J, Lima M, Lee NE (1988) The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem J 255:895–899

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Foundation (NRF) for financial support. We would also like to express gratitude to Nico de Villiers from Omic Solutions for assistance in the real-time PCR experiments and Anscha Zietsman and Dr Riaan den Haan for supplying plasmids pAZ1 and YEpENO-sCBHI, as well as strain Saccharomyces cerevisiae Y294[BGL1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem H. van Zyl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Plessis, L., Rose, S.H. & van Zyl, W.H. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 86, 1503–1511 (2010). https://doi.org/10.1007/s00253-009-2403-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2403-z

Keywords

Navigation