Skip to main content
Log in

Transgenic wine yeast technology comes of age: is it time for transgenic wine?

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is the main yeast responsible for alcoholic fermentation of grape juice during wine making. This makes wine strains of this species perfect targets for the improvement of wine technology and quality. Progress in winemaking has been achieved through the use of selected yeast strains, as well as genetic improvement of wine yeast strains through the sexual and pararexual cycles, random mutagenesis and genetic engineering. Development of genetically engineered wine yeasts, their potential application, and factors affecting their commercial viability will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akada R, Matsuo K, Aritomi K et al (1999) Construction of recombinant sake yeast containing a dominant FAS2 mutation without extraneous sequences by a two-step gene replacement protocol. J Biosci Bioeng 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Backus MP, Stauffer JF (1955) The production and selection of a family of strains in Penicillium chrysogenum. Mycologia 47:429–463

    Article  Google Scholar 

  • Bakalinsky AT, Snow R (1990) The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6:367–382

    Article  PubMed  CAS  Google Scholar 

  • Bianchini F, Vainio H (2003) Wine and resveratrol: Mechanisms of cancer prevention? Eur J Cancer Prev 12:417–425

    Article  PubMed  CAS  Google Scholar 

  • Bony M, Bidart F, Camarasa C et al (1997) Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation. FEBS Lett 410:452–456

    Article  PubMed  CAS  Google Scholar 

  • Cebollero E, Gonzalez R (2004) Comparison of two alternative dominant selectable markers for wine yeast transformation. Appl Environ Microbiol 70:7018–7023

    Article  PubMed  CAS  Google Scholar 

  • Cebollero E, Martinez-Rodriguez AJ, Carrascosa AV et al (2005) Overexpression of csc1–1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis. FEMS Microbiol Lett 246:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cooper KA, Chopra M, Thurnham DI (2004) Wine polyphenols and promotion of cardiac health. Nut Res Rev 17:111–29

    Article  CAS  Google Scholar 

  • de Barros Lopes M, Bellon JR, Shirley NJ et al (2002) Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Res 1:323–331

    Article  PubMed  Google Scholar 

  • del Pozo L, Abarca D, Claros MG et al (1991) Cycloheximide resistance as a yeast cloning marker. Curr Genet 19:353–358

    Article  PubMed  Google Scholar 

  • Dequin S, Barre P (1994) Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology (N Y) 12:173–177

    Article  CAS  Google Scholar 

  • Di Castelnuovo A, Rotondo S, Iacoviello L et al (2002) Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 105:2836–2844

    Article  PubMed  Google Scholar 

  • Dunn B, Levine RP, Sherlock G (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6:53

    Article  PubMed  CAS  Google Scholar 

  • Eschenbruch R, Cresswell KJ, Fisher BM et al (1982) Selective hybridisation of pure culture wine yeasts I. Elimination of undesirable wine-making properties. Appl Microbiol Biotechnol 14:155–158

    Article  Google Scholar 

  • Escot S, Feuillat M, Dulau L et al (2001) Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Aus J Grape Wine Res 7:153–159

    Article  Google Scholar 

  • Fernandez-Gonzalez M, Ubeda JF, Cordero-Otero RR et al (2005) Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine. Int J Food Microbiol 102:173–183

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH (ed) (1993) Wine microbiology and biotechnology. Harwood Academic, Switzerland

    Google Scholar 

  • Ganga MA, Piñaga F, Valles S et al (1999) Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int J Food Microbiol 47:171–178

    Article  PubMed  CAS  Google Scholar 

  • Gietz D, St Jean A, Woods RA et al (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

  • Gimeno-Alcañiz JV, Matallana E (2001) Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation. Syst Appl Microbiol 24:639–644

    Article  Google Scholar 

  • Giudici P, Solieri L, Pulvirenti AM et al (2005) Strategies and perspectivas for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Martinez-Rodriguez A, Carrascosa A (2003) Yeast autolytic mutants potentially useful for sparkling wine production. Int J Food Microbiol 84:21–26

    PubMed  CAS  Google Scholar 

  • Gonzalez S, Barrio E, Gafner et al (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res (in press)

  • Gonzalez-Candelas L, Cortell A., Ramon D (1995) Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene. FEMS Microbiol Lett 126:263–269

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Candelas L, Gil JV, Lamuela-Raventos RM et al (2000) The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. Int J Food Microbiol 59:179–183

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Ogura M, Aritomi K et al (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol 71:312–319

    Article  PubMed  CAS  Google Scholar 

  • Hauser NC, Fellenberg K, Gil R et al (2001) Whole genome analysis of a wine yeast strain. Comp Funct Genomics 2:69–79

    Article  CAS  PubMed  Google Scholar 

  • Husnik JI, Volschenk H, Bauer J et al (2006) Metabolic engineering of malolactic wine yeast. Metab Eng 8:315–323

    Article  PubMed  CAS  Google Scholar 

  • Jimenez A, Davies J (1980) Expression of transposable antibiotic resistance elements in Saccharomyces. Nature 287:869–871

    Article  PubMed  CAS  Google Scholar 

  • Klinner U, Schafer B (2004) Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 28:201–223

    Article  PubMed  CAS  Google Scholar 

  • Kunkee RE, Amerine MA (1970) Yeast in wine-making. In: Harrison JS, Rose AH (eds) The yeasts, vol 3. Acadamic Press, New York, pp 5–71

  • Lee FJS, Hassan LMM (1988) Stability and expression of a plasmid-containing killer toxin cDNA in batch and chemostat cultures of Saccharomyces cerevisiae. Biotechnol Bioeng 31:783–789

    Article  CAS  PubMed  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  PubMed  CAS  Google Scholar 

  • Lund ST, Bohlmann J (2006) The molecular basis for wine grape quality - A volatile subject. Science 311:804–805

    Article  PubMed  CAS  Google Scholar 

  • Manzanares P, Orejas M, Gil JV et al (2003) Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an α-L-rhamnosidase of enological interest. Appl Environ Microbiol 69:7558–7562

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Rodriguez A, Carrascosa AV, Barcenilla JM et al (2001) Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol 18:183–191

    Article  CAS  Google Scholar 

  • Martinez-Rodriguez AJ, Gonzalez R, Carrascosa AV (2004) Morphological changes in autolytic wine yeast during aging in two model systems. J Food Sci 69:M233–M239

    Article  CAS  Google Scholar 

  • Masneuf I, Hansen J, Groth C et al (1998) New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol 64:3887–3892

    PubMed  CAS  Google Scholar 

  • Michnick S, Roustan JL, Remize F et al (1997) Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPDI encoding glycerol 3-phosphate dehydrogenase. Yeast 13:783–793

    Article  PubMed  CAS  Google Scholar 

  • Nuñez YP, Carrascosa AV, Gonzalez R et al (2005) Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by a champenoise. Method J Agric Food Chem 53:7232–7237

    Article  CAS  Google Scholar 

  • Perez-Gonzalez JA, Gonzalez R, Querol A et al (1993) Construction of a recombinant wine yeast strain expressing a β-(1,4)-endoglucanase activity and its use in microvinification processes. Appl Environ Microbiol 59:2801–2806

    PubMed  CAS  Google Scholar 

  • Perez-Torrado R, Gimeno-Alcañiz JV, Matallana E (2002) Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions. Appl Environ Microbiol 68:3339–3344

    Article  PubMed  CAS  Google Scholar 

  • Petering JE, Henschke PA, Langridge P (1991) The Escherichia coli β-glucuronidase gene as a marker for Saccharomyces yeast strain identification. Am J Enol Vitic 42:6–12

    CAS  Google Scholar 

  • Pretorious IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  Google Scholar 

  • Puig S, Querol A, Ramon D et al (1996) Evaluation of the use of phase-specific gene promoters for the expression of enological enzymes in an industrial wine yeast strain. Biotehnol Lett 18:887–892

    Article  CAS  Google Scholar 

  • Puig S, Ramon D, Perez-Ortin JE (1998) Optimizad method to obtain stable food-safe recombinant wine yeast strains. J Agric Food Chem 46:1689–1693

    Article  CAS  Google Scholar 

  • Querol A, Fleet G (eds) (2006) Yeasts in food and beverages (The yeasts handbook; 2) Springer-Verlag Heidelberg

  • Querol A, Ramon D (1996) The application of molecular techniques in wine microbiology. Trends Food Sci Tech 7:73–78

    Article  CAS  Google Scholar 

  • Rainieri S, Pretorious IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–31

    CAS  Google Scholar 

  • Ramirez M, Perez F, Regodon JA (1998) A simple and reliable method for hybridization of homothallic wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 64:5039–5041

    PubMed  CAS  Google Scholar 

  • Ramirez M, Regodon JA, Perez F et al (1999) Wine yeast fermentation vigor may be improved by elimination of recessive growth-retarding alleles. Biotechnol Bioeng 65:212–218

    Article  PubMed  CAS  Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: Role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  PubMed  CAS  Google Scholar 

  • Salmon JM, Barre P (1998) Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol 64:3831–3837

    PubMed  CAS  Google Scholar 

  • Sanchez-Torres P, Gonzalez-Candelas L, Ramon D (1996) Expression on a wine yeast strain of the Aspergillus niger abfB gene. FEMS Microbiol Lett 145:189–194

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Torres P, Gonzalez-Candelas L, Ramon D (1998) Heterologous expression of a Candida molischiana anthocyanin-β-glucosidase in a wine yeast strain. J Agric Food Chem 46:354–360

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Choi EH, Ryu D (1985) Construction of killer wine yeast strain. Appl Environ Microbiol 49:1211–1215

    PubMed  CAS  Google Scholar 

  • Snow R (1983) Genetic improvement of wine yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics: fundamental and applied aspects. Springer Verlag, New York, pp 439–459

    Google Scholar 

  • Sulo P, Michalcakova S (1992) The K3 type killer strains of genus Saccharomyces for wine production. Folia Microbiol 37:289–294

    CAS  Google Scholar 

  • Tabera L, Muñoz R, Gonzalez R (2006) Deletion of BCY1 from the Saccharomyces cerevisiae genome is semidominant and induces autolytic phenotypes suitable for improvement of sparkling wines. Appl Environ Microbiol 72:2351–2358

    Article  PubMed  CAS  Google Scholar 

  • Thornton RJ (1985) The introduction of flocculation into a homothallic wine yeast. A practical example of the modification of winemaking properties by the use of genetic techniques. Am J Enol Vitic 36:47–49

    Google Scholar 

  • Varela C, Cardenas J, Melo F et al (2005) Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22:369–383

    Article  PubMed  CAS  Google Scholar 

  • Vilanova M, Blanco P, Cortes S et al (2000) Use of a PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentations. J Appl Microbiol 89:876–883

    Article  PubMed  CAS  Google Scholar 

  • Wach A, Brachat A, Pohlmann R et al (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  PubMed  CAS  Google Scholar 

  • Wu JM, Wang ZR, Hsieh TC et al (2001) Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. Int J Mol Med 8:3–17

    PubMed  CAS  Google Scholar 

  • Xie Q, Jimenez A (1996) Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett 137:165–168

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Nonomura H (1991) Use of chloramphenicol-inherent resistance in protoplast fusion of industrial yeast strains. J Ferment Bioeng 72:300–302

    Article  Google Scholar 

  • Yamazaki T, Nonomura H (1994) Inherent G418-resistance in hybridization of industrial yeasts. J Ferment Bioeng 77:202–204

    Article  CAS  Google Scholar 

  • Zuzuarregui A, Monteoliva L, Gil C et al (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72:836–847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of the authors is sustained by grants from the Spanish Ministry for Science and Education (AGL2003-01762, AGL2006-02558), and Comunidad de Madrid (S-505/AGR-0153). DGR is the recipient of a fellowship from the Government of The Basque Country (Gobierno Vasco-Eusko Jaurlaritza). We are grateful to anonymous referee, whose comments allowed greatly improving this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cebollero, E., Gonzalez-Ramos, D., Tabera, L. et al. Transgenic wine yeast technology comes of age: is it time for transgenic wine?. Biotechnol Lett 29, 191–200 (2007). https://doi.org/10.1007/s10529-006-9236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9236-y

Keywords

Navigation