Skip to main content
Log in

Investigation of biomass waste biochar production to act as matrix for urea

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this work, the synthesis of biochar from several biomass wastes to act as matrix for urea was investigated. The objective was to select the most promising biochar synthesis condition that result in a matrix with the highest urea retention and subsequent slow release as well as to understand the urea–biochar interaction. A quite simple urea impregnation method was proposed and investigated for biuret formation; its experimental conditions were optimized to increase final urea retention performance. The results pointed out that the urea–biochar interaction has chemical nature, in which the lower presence of mineral elements associated with an acid surface seemed to favor the urea retention. The material impregnated at 133 °C for 1 h with the straw biochar synthesized at 400 °C for 0.5 h showed the lowest initial release of urea (≈ 17 wt. %). However, it presented a high content of biuret (≈ 8 wt. %). Thus, an alternative material was produced applying a shorter period of urea impregnation (10 min); it also maintained the initial release of urea ≈ 17 wt. %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–133. https://doi.org/10.1016/j.cej.2014.06.023

    Article  Google Scholar 

  2. IFA INTERNATIONAL FERTILIZER INSDUSTRY ASSOCIATION (2013) Fertilizer indicators, 3rd edn. IFA, Paris

    Google Scholar 

  3. Verdier J, Benedito VA, Udvardi MK (2012) The Medicago truncatula Gene Expression Atlas (MtGEA): A Tool for Legume Seed Biology and Biotechnology. In: Agrawal GK, Rakwal R (eds) Seed Development: Omics Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Netherlands, Dordrecht, pp 111–127

    Chapter  Google Scholar 

  4. Saha BK, Rose MT, Wong VNL, Cavagnaro TR, Patti AF (2019) A slow-release brown coal-urea fertilizer reduced gaseous N loss from soil and increased silver beet yield and N uptake. Sci Total Environ 649:793–800. https://doi.org/10.1016/j.scitotenv.2018.08.145

    Article  Google Scholar 

  5. Ricci M (2013) Carbon dioxide as a building block for organic intermediates: an industrial perspective. In: Aresta M (ed) Carbon dioxide recovery and utilization. Springer Science & Business Media, Dordrecht, pp 395–402

    Google Scholar 

  6. Jones C, Brown BD, Engel R, Horneck D, Olson-rutz K (2013) Factors affecting nitrogen fertilizer volatilization. Montana State University Extension, Bozeman. http://landresources.montana.edu/soilfertility/documents/PDF/pub/UvolfactEB0208.pdf. Accessed 16 Mar 2018

  7. Osman KT (2012) Soils: principles, properties, and management. Springer Science & Business Med, Dordrecht

    Google Scholar 

  8. Yuan W, Solihin ZQ, Kano J, Saito F (2014) Mechanochemical formation of K-Si–Ca–O compound as a slow-release fertilizer. Powder Technol 260:22–26. https://doi.org/10.1016/j.powtec.2014.03.072

    Article  Google Scholar 

  9. Jyothi AN, Pillai SS, Aravind M, Salim SA, Kuzhivilayil SJ (2018) Cassava starch-graft-poly(acrylonitrile)-coated urea fertilizer with sustained release and water retention properties. Adv Polym Technol 37:2687–2694. https://doi.org/10.1002/adv.21943

    Article  Google Scholar 

  10. Said A, Zhang Q, Qu J, Liu Y, Lei Z, Hu H, Xu Z (2018) Mechanochemical activation of phlogopite to directly produce slow-release fertilizer. Appl Clay Sci 165:77–81. https://doi.org/10.1016/j.clay.2018.08.006

    Article  Google Scholar 

  11. Trenkel ME (2010) Slow-and controlled-release, and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. 2nd edn. International Fertilizer Industry Association (IFA), Paris

  12. Azeem B, Kushaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled-release coated urea fertilizer. J Controlled Release 181:11–21. https://doi.org/10.1016/j.jconrel.2014.02.020

    Article  Google Scholar 

  13. Trinh TH, Kushaari K, Shuib AS, Ismail L, Azeem B (2015) Modelling the release of nitrogen from controlled-release fertilizer: constant and decay release. Biosyst Eng 130:34–42. https://doi.org/10.1016/j.biosystemseng.2014.12.004

    Article  Google Scholar 

  14. Melaj MA, Daraio ME (2013) Preparation and characterization of potassium nitrate controlled-release fertilizers based on chitosan and xanthan layered tablets. J Appl Polym Sci 130:2422–2428. https://doi.org/10.1002/app.39452

    Article  Google Scholar 

  15. Perez JJ, Francois NJ (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142. https://doi.org/10.1016/j.carbpol.2016.04.054

    Article  Google Scholar 

  16. González ME, Cea M, Medina J, González A, Diez MC, Cartes P, Monreal CN, R. (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ 505:446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014

    Article  Google Scholar 

  17. Bhardwaj D, Sharma M, Sharma P, Tomar R (2012) Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J Haz Mat 227–228:292–300. https://doi.org/10.1016/j.jhazmat.2012.05.058

    Article  Google Scholar 

  18. Yuan G (2014) An organoclay formula for the slow release of soluble compounds. Appl Clay Sci 100:84–87. https://doi.org/10.1016/j.clay.2014.04.005

    Article  Google Scholar 

  19. UNIVERSIDAD DE LA FRONTERA. Diez RJN, Astete REB, Jerez MCD, Ramírez NZS, Fuentes GAC, Lemus MXC, Aedo CAT, Ruiz AG, Quijón MEG (2014) Controlled-release nitrogen fertilizer using biochar as a renewable support matrix. WO n. 2014/091279A1, 12 Dec. 2012, 14 June 2014

  20. Magrini-Bair KA, Czernik S, Pilath HM, Evans RJ, Maness PC, Leventhal J (2009) Biomass derived, carbon sequestering, designed fertilizers. Annals Environ Sci 3:217–225

    Google Scholar 

  21. Luyima D, Lee J, Sung J, Oh T (2020) Co-pyrolysed animal manure and bone meal-based urea hydrogen peroxide (UHP) fertilisers are an effective technique of combating ammonia emissions. J Mater Cycles Waste Manag 22:1887–1898. https://doi.org/10.1007/s10163-020-01074-7

    Article  Google Scholar 

  22. Hutten IM (2007) Raw materials for nonwoven filter media. In: Handbook of nonwoven filter media, Butterworth-Heinemann, pp 103–194. https://doi.org/10.1016/B978-185617441-1/50019-6

  23. Empresa Brasileira de Pesquisa Agropecuária Ministério da Agricultura, Pecuária e Abastecimento (EMBRAPA) (2021) Beneficiamento da casca de coco verde para a produção de fibra e pó. https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/33/beneficiamento-da-casca-de-coco-verde-para-a-producao-de-fibra-e-po. Accessed 13 Nov 2021

  24. Melati RB, Schmatz AA, Pagnocca FC, Contiero J, Brienzo M (2017) Sugarcane bagasse: production, composition, properties, and feedstock potential. Sugarcane: production systems, uses and economic importance, pp 1–38. http://hdl.handle.net/11449/174692

  25. Leal MRV, Walter AS, Seabra JEA (2013) Sugarcane as an energy source. Biomass Convers Biorefinery 3:17–26. https://doi.org/10.1007/s13399-012-0055-1

    Article  Google Scholar 

  26. Companhia Nacional de Abastecimento (CONAB) (2020) Acompanhamento da safra basileira: cana-de-açúcar. V7 Safra 2020/21 N.3, 3rd survey, Dec

  27. Barbosa BH, Santos CS, Oliveira S (2018) Análise da eficiência energética do bagaço da cana na geração de vapor em uma usina sucroalcooleira. RMetrop Sustent 8(3):106–112

    Google Scholar 

  28. UNESP (UNIVERSIDADE ESTADUAL PAULISTA) (2012) Composição do Bagaço de cana-de-açúcar. UNESP, Rio Claro http://www.rc.unesp.br/ib/ceis/mundoleveduras/2012/Composi%C3%A7%C3%A3o%20do%20Baga%C3%A7o%20de%20cana-de-a%C3%A7%C3%BAcar.pdf. Accessed 10 Aug 2016

  29. Menandro LMS, Cantarella H, Franco HCJ, Kölln OT, Pimenta MTB, Sanches GM, Rabelo SC, Carvalho JLN (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioprod Bioref 11(3):488–504. https://doi.org/10.1002/bbb.1760

    Article  Google Scholar 

  30. Pupulin C (2015) Retrospectiva canal 2015: biomassa da cana-de-açúcar é pura energia. Goiânia: Mac Editora e Jornalismo. http://www.canalbioenergia.com.br/biomassa-da-cana-de-acucar-aproveitamento-ou-desperdicio/. Accessed 05 Dec 2020

  31. Giraldo JD, Rivas BL (2017) Determination of urea using p-N, N-dimethylaminobenzaldeyde: solvent effect and interference of chotosan. J Chilean Chem Soc 62:3538–3542. https://doi.org/10.4067/S0717-97072017000200023

    Article  Google Scholar 

  32. Shi L, Liu Q, Guo X, Wu W, Liu Z (2013) Pyrolysis behavior and bonding information of coal — A TGA study. Fuel Proc Technol 108:125–132. https://doi.org/10.1016/j.fuproc.2012.06.023

    Article  Google Scholar 

  33. ASTM D5373 (2016). Standard Test Methods for Determination of Carbon, Hydrogen, and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke

  34. Boehm HP, Diehl E, Heck W, Sappok R (1964) Surface oxides of carbon. Angewandte Chem Internat Ed 3:669–677. https://doi.org/10.1002/anie.196406691

    Article  Google Scholar 

  35. Noh JS, Schwarz JA (1989) Estimation of the point of zero charge of simple oxides by mass titration. J Coll Interface Sci 130:157–164. https://doi.org/10.1016/0021-9797(89)90086-6

    Article  Google Scholar 

  36. Ferreira RB, Franzini VP, Gomes Neto JÁ (2007) Determinação de biureto em ureia agroindustrial por espectrofotometria. Eclét Quím 32:43–48. https://doi.org/10.1590/S0100-46702007000100006

    Article  Google Scholar 

  37. Tan Z, Zou J, Zhang L, Huang Q (2018) Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres. J Mater Cycles Waste Manag 20:1036–1049. https://doi.org/10.1007/s10163-017-0666-5

    Article  Google Scholar 

  38. Bera T, Purakayastha TJ, Patra AK, Datta SC (2018) Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. J Mater Cycles Waste Manag 20:1115–1127. https://doi.org/10.1007/s10163-017-0675-4

    Article  Google Scholar 

  39. Yang Y, Ni X, Zhou Z, Yu L, Liu B, Yang Y, Wu Y (2017) Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits. F Crops Res 212:73–81. https://doi.org/10.1016/j.fcr.2017.07.005

    Article  Google Scholar 

  40. Zhou T, Wang Y, Huang S, Zhao Y (2018) Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers. Sci Total Environ 615:422–430. https://doi.org/10.1016/j.scitotenv.2017.09.084

    Article  Google Scholar 

  41. Lehmann J, Joseph S (2009) Biochar for environmental management science and technology. Eartscan, London

    Google Scholar 

  42. Do PTM, Ueda T, Kose R, Nguyen LX, Okayama T, Miyanishi T (2019) Properties and potential use of biochars from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. J Mater Cycles Waste Manag 21:98–106. https://doi.org/10.1007/s10163-018-0768-8

    Article  Google Scholar 

  43. Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organ Geochem 37:321–333. https://doi.org/10.1016/j.orggeochem.2005.10.008

    Article  Google Scholar 

  44. Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosci 11:6613–6621. https://doi.org/10.5194/bg-11-6613-2014

    Article  Google Scholar 

  45. Masresha S (2018) Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil. School of Chemical and Bio-Engineering. Addis Ababa University. http://213.55.95.56/bitstream/handle/123456789/15762/Selam%20Masresha.pdf?sequence=1&isAllowed=y. Accessed 08 Oct 2019

  46. Jassal RS, Johnson MS, Molodovskaya M, Black TA, Jollymore A, Sveinson K (2015) Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. J Environ Manag 152:140–144. https://doi.org/10.1016/j.jenvman.2015.01.021

    Article  Google Scholar 

  47. Novak JM, Lima I, Xing B, Gaskin J, Steiner C, Das K, Ahmedna M, Rehrah D, Watts D, Busscher W, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals Environ Sci 3:195–206. https://openjournals.neu.edu/aes/journal/article/view/v3art5/v3p195-206. Accessed 08 Jun 2019

  48. Sahoo K, Kumar A, Chakraborty JP (2021) A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. J Mater Cycles Waste Manag 23:186–204. https://doi.org/10.1007/s10163-020-01114-2

    Article  Google Scholar 

  49. Santos LER, Meili L, Soletti JI, Carvalho SHV, Ribeiro LMO, Duarte JLS, Santos R (2020) Impact of temperature on vacuum pyrolysis of Syagrus coronate for biochar production. J Mater Cycles Waste Manag 22:878–886. https://doi.org/10.1007/s10163-020-00978-8

    Article  Google Scholar 

  50. Fang Q, Chen B, Lin Y, Guan Y (2014) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48:279–288. https://doi.org/10.1021/es403711y

    Article  Google Scholar 

  51. Das D, Samal DP, Meikap BC (2015) Preparation of activated carbon from green coconut shell and its characterization. J Chem Eng Proc Technol 6:1000248. https://doi.org/10.4172/2157-7048.1000248

    Article  Google Scholar 

  52. Ghosh U, Luthy RG, Conerlissen G, Werner D, Menzie CA (2011) In-situ sorbent amendments: a new direction in contaminated sediment management. Environ Sci Technol 45:1163–1168. https://doi.org/10.1021/es102694h

    Article  Google Scholar 

  53. Cheng CH, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosp 75:1021–1027. https://doi.org/10.1016/j.chemosphere.2009.01.045

    Article  Google Scholar 

  54. Li J, Zhang H, Tang X, Lu H (2016) Adsorptive desulfurization of dibenzothiophene over lignin-derived biochar by one-step modification with potassium hydrogen phthalate. RSC Adv 6:100352–100360. https://doi.org/10.1039/c6ra20220a

    Article  Google Scholar 

  55. Kim WK, Shim T, Kim YS, Hyun S, Ryu C, Park YK, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Biores Technol 138:266–270. https://doi.org/10.1016/j.biortech.2013.03.186

    Article  Google Scholar 

  56. DISHA EXPERTS, (2017) 10 in one study package for CBSE chemistry class 12 with 5 model papers. Disha Publications, New Delhi

    Google Scholar 

  57. Montes-Morán MA, Suárez D, Menéndez JA, Fuente E (2004) On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219–1225. https://doi.org/10.1016/j.carbon.2004.01.023

    Article  Google Scholar 

  58. Marsh H, Rodríguez-Reinoso F (2006) Activated Carbon. Elsevier, Amesterdam

    Book  Google Scholar 

  59. Bandosz TJ, Ania CO (2006) Surface chemistry of activated carbons and its characterization. In: Carbon A (ed) BANDOSZ TJ. Surfaces in Environmental Remediation. Elsevier, New York, pp 159–229

    Google Scholar 

  60. Melo LCA, Coscione AR, Abreu CA, Puga AP, Camargo OA (2013) Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw-derived biochar. BioRes 8:4992–5004. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/BioRes_08_4_4992_Melo_CAPC_Pyrol_Temp_Cd_Zn_Sorp_Capacity_Cane_Biochar_4370.pdf. Accessed 09 Aug 2019

  61. Hariz ARM, Azlina WAKGW, Fazly MM, Norziana ZZ, Ridzuan MDM, Tosiah S, Ain ABN (2015) Local practices for production of rice husk biochar and coconut shell biochar: production methods, product characteristics, nutrient, and field water holding capacity. J Trop Agricult Food Sci 43:91–101. http://psasir.upm.edu.my/id/eprint/48906/. Accessed 07 Aug 2019

  62. Redemann CE, Riesenfeld FC, La Viola FS (1958) Formation of Biuret from Urea. Ind Eng Chem 50:633–636. https://doi.org/10.1021/ie50580a035

    Article  Google Scholar 

  63. Young D, Green J (1982) Method of selectively removing biuret from urea and compositions for use therein. US n. 4345099, 10 Aug. 1981, 17 Aug. 1982

  64. Baia LV, Araujo LRR, Pereira CG, Souza WC, Figueiredo MAG (2021) Adsorption as alternative process in the preliminary production of automotive additive. Chem Ind Chem Eng Q 26(3):215–226. https://doi.org/10.2298/CICEQ190419038B

    Article  Google Scholar 

  65. Xie L, Liu M, Ni B, Zhang X, Wang Y (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng J 167:342–348. https://doi.org/10.1016/j.cej.2010.12.082

    Article  Google Scholar 

  66. Saha BK, Rose MT, Cavagnaro TR, Patti AF (2017) Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. Sci Total Environ 601–602:1496–1504. https://doi.org/10.1016/j.scitotenv.2017.05.270

    Article  Google Scholar 

  67. Rose MT, Perkins EL, Saha BK, Tang ECW, Cavagnaro TR, Jackson WR, Hapgood KP, Hoadley AFA, Patti AF (2016) A slow release nitrogen fertiliser produced by simultaneous granulation and superheated steam drying of urea with brown coal. Chem Biol Technol Agric 3:10. https://doi.org/10.1186/s40538-016-0062-8

    Article  Google Scholar 

  68. Dimin MF, Sian-Meng S, Shaaban A, Hashim MM (2014) Urea impregnated biochar to minimize nutrients loss in paddy soils. Internatl J Automot Mech Eng (IJAME) 10:2016–2024. https://doi.org/10.15282/ijame.10.2014.18.0169

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 [process number 88881.189377/2018-01]; Fundação para a Ciência e a Tecnologia is also acknowledged for financial support [Projects to CQE (UIDB/MULTI/00100/2020 and UIDP/00100/2020) and IMS (LA/P/0056/2020)]; and Qualitec Program (Call2018) from Universidade do Estado do Rio de Janeiro (UERJ). Luna, A. S. thanks to FAPERJ—Programa Cientista de Nosso Estado, Universidade do Estado do Rio de Janeiro -Programa Pró-Ciência and CNPq – Bolsa de Produtividade, nível 1D—for financial support.

Funding

Universidade do Estado do Rio de Janeiro, Programa Qualitec—Call2018,Luana Baia, IC-PIBIC, Juliana Leitão, Programa Pró-Ciência, Aderval Luna,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Finance Code 001 [process number 88881.189377/2018–01], Luana Baia, Fundação para a Ciência e a Tecnologia, [Projects to CQE (UIDB/MULTI/00100/2020 and UIDP/00100/2020) and IMS (LA/P/0056/2020)], Ana Paula de Carvalho, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Programa Cientista de Nosso Estado, Aderval Luna, Conselho Nacional de Pesquisas CNPQ, Bolsa de Produtividade, Aderval Luna,nível 1D, Aderval Luna

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luana V. Baia or Marco A. G. Figueiredo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Below, it can find the formulas used in the quantification techniques of this work.

Pyrolysis yield

$$Yield \left(\mathrm{\%}\right)={m}_{f}/{m}_{0} \times 100$$
(A.1)

In which: m0—initial biomass mass (g);

mf—biochar final mass (g).

Percentual of the initial release

$$\mathrm{\% }Initial release={m}_{u0}/{m}_{ut} \times 100$$
(A.2)

In which: mu0—urea mass quantified in the volume of liquid recovered at the first monitoring point (t = 20 min);

mut—total mass of urea in the release agent (t = 0).

Volatile matter (vm)

$$vm\left(\mathrm{\%}\right)= ({m}_{d}-{m}_{h})/{m}_{d}$$
(A.3)

In which: md—the mass of dried sample (g);

mh—mass post-heating (g).

Ash content (ac)

$$ac (\mathrm{\%})={m}_{a}/{m}_{d} \times 100$$
(A.4)

In which: ma—ash mass after the final heating (g);

md—the mass of dried sample (g).

Boehm titration

$${n}_{CSF}= {[V}_{T}{N}_{b}\left({V}_{am}-{V}_{b}\right)]/({V}_{al}{m}_{bu})$$
(A.5)

In which:

ncsf—the amount of acid functional groups on the surface of the solid that reacted with the base (mol.g−1);

Nb—concentration of the titrant (mol dm−3 −1);

Vam—Volume of titrant spent with the sample (dm−3);

Vb—Volume of titrant spent on blank titrations (dm−3);

Val—Filtrate aliquot volume (dm−3);

VT—Volume of solution added to the coal (dm−3);

mbu—the mass of previously dried biochar (g) (Table 3).

In the calculation of alkaline groups, the order of subtraction was inverted from (VamVb) to (VbVam).

Appendix B

Table 3 Urea release performance parameters of sample group I

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baia, L.V., Luna, A.S., Leitão, J.P.S. et al. Investigation of biomass waste biochar production to act as matrix for urea. J Mater Cycles Waste Manag 24, 606–617 (2022). https://doi.org/10.1007/s10163-021-01345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01345-x

Keywords

Navigation