Skip to main content

The Medicago truncatula Gene Expression Atlas (MtGEA): A Tool for Legume Seed Biology and Biotechnology

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

Legumes account for approximately one third of world primary crop production and are vital sources of protein, oil, carbohydrates, fiber, and minerals for humans, livestock, and industrial processing. Grain nutrient composition varies between legume species as well as between genotypes of the same species. The major metabolic pathways responsible for storage protein, lipid, and starch biosynthesis are well characterized in several plant species, although it remains unclear how partitioning between these pathways and their end products is regulated. Seed development is a complex process that involves coordinated expression and regulation of thousands of genes in different cell and tissue types. The Medicago truncatula Gene Expression Atlas (MtGEA) provides genome-wide expression data for all major organs of M. truncatula, including a rich time series for seed development. This chapter describes how the MtGEA provides a comprehensive view of the genetic and molecular processes of seed development. MtGEA is playing an instrumental role in identifying regulatory and metabolic genes potentially determining seed composition and seed quality. Therefore, MtGEA is a valuable resource for seed biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the caco-2 cell in vitro model. J Agric Food Chem 55:7950–7956

    Article  PubMed  CAS  Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  • Barnabas AD, Arnott HJ (1990) Calcium oxalate crystal formation in the bean (Phaseolus vulgaris L.) seed coat. Bot Gazette 151:331–341

    Article  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biography, and evolution of dormancy and germination. In: Baskin CC, Baskin JM (eds) . Academic, San Francisco, pp 666

    Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans Royal Soc B: Biol Sci 365:61–71

    Article  Google Scholar 

  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frinckey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume, Medicago truncatula. Plant J 55:504–513

    Article  PubMed  CAS  Google Scholar 

  • Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50

    Google Scholar 

  • Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670

    Article  PubMed  CAS  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336

    Article  PubMed  CAS  Google Scholar 

  • Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.) Theor Appl Genet 118:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Coelho CMM, Benedito VA (2008) Seed development and reserve compound accumulation in common bean (Phaseolus vulgaris L.). Seed Sci Biotechnol 2:42–52

    Google Scholar 

  • De Sousa Araujo S, Roldao Lopes Amaral Duque AS, Metelo Fernandes Dos Santos DM, Salema Fevereiro MP (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell, Tissue Organ Culture 78:123–131

    Article  Google Scholar 

  • Dhaubhadel S et al (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743. doi:10.1023/B:PLAN.0000023666.30358.ae

    Google Scholar 

  • Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Article  PubMed  CAS  Google Scholar 

  • Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi JM, Rochat C, Boutin JP (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43:557–566

    Article  PubMed  CAS  Google Scholar 

  • FAO (2009) Declaration of the world summit on food security. (ftp://ftp.fao.org/docrep/fao/meeting/018/k6119e.pdf)

    Google Scholar 

  • Faria JMR, Buitink J, van Lammeren AAM, Hilhorst HWM (2005) Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J Exp Bot 56:2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Firnhaber C, Pühler A, Küster H (2005) EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. Planta 222:269–283

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Kurt C, Thompson R, Ochatt S (2006a) In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Sci 170:1052–1058

    Google Scholar 

  • Gallardo K, Le Signor C, Darmency M, Burstin J, Thompson RD, Rochat C, Boutin J-P, Küster H, Buitink J, Leprince O, Limami A, Grusak MA (2006b) Seed biology of Medicago truncatula. In: The Medicago truncatula handbook. http://www.noble.org/MedicagoHandbook/pdf/SeedBiology.pdf

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    Article  PubMed  Google Scholar 

  • Gatehouse JA, Evans IM, Bown D, Croy RR, Boulter D (1982) Control of storage-protein synthesis during seed development in pea (Pisum sativum L.). Biochem J 208:119–127

    PubMed  CAS  Google Scholar 

  • Gatehouse JA, Evans IM, Croy RRD, Boulter D (1986) Differential expression of genes during legume seed development. Phil Trans R Soc Lond B 314:367–384

    Article  CAS  Google Scholar 

  • Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Goffard N, Weiller G (2007a) GeneBins: a database for classifying gene expression data, with application to plant genome arrays. BMC Bioinformatics 8:87

    Article  Google Scholar 

  • Goffard N, Weiller G (2007b) PathExpress: a web-based tool to identify relevant pathways in gene expression data. Nucl Acids Res 35:176–181

    Article  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis-zygote to seed. Science 266:605–614

    Article  PubMed  CAS  Google Scholar 

  • Grela ER, Günter KD (1995) Fatty acid composition and tocopherol content of some legume seeds. Animal Feed Sci Tech 52:325–331

    Article  CAS  Google Scholar 

  • Guillon F, Champ MM-J (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. British J Nutr 88:293–306

    Article  Google Scholar 

  • Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Biol Chem 256:4494–4497

    PubMed  CAS  Google Scholar 

  • He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y, Udvardi MK (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinformatics 10:441

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucl Acids Res 32:D277–D280

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Le Signor C, Gallardo K, Prosperi JM, Salon C, Quillien L, Thompson R, Duc G (2005) Genetic diversity for seed protein composition in Medicago truncatula. Plant Genet Res 3:59–71

    Article  CAS  Google Scholar 

  • Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J, Thompson R (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotech J 7:430–441

    Article  CAS  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact 17:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • McPhee KE, Zemetra RS, Brown J, Myers JR (2002) Genetic analysis of the raffinose family oligosaccharides in common bean. J Amer Soc Hort Sci 127:376–382

    CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A 94:8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Munier-Jolain NG, Munier-Jolain NM, Roche R, Ney B, Duthion C (1998) Seed growth rate in grain legumes I. Effect of photoassimilate availability on seed growth rate. J Exp Bot 49:1963–1969

    CAS  Google Scholar 

  • Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–615

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci U S A 105:14210–14215

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (1990) The biochemistry and genetics of phytic acid synthesis in higher plants. In: Inositol Metabolism in Plants (Editors: Morre EJ, Boss WS, Loewus FA). Wiley, New York, pp 55–76

    Google Scholar 

  • Raboy V (2007) The ABCs of low-phytate crops. Nat Biotechnol 25:874–875

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Article  PubMed  CAS  Google Scholar 

  • Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K (2008) Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. Plant J 56:398–410

    Article  PubMed  CAS  Google Scholar 

  • Rogers C, Wen J, Chen R, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Bray CM (1987) Stored and de novo synthesised polyadenylated RNA and loss of vigour and viability in wheat seed. Plant Sci 51:51–59

    Article  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratel P, Mysore SK (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  PubMed  CAS  Google Scholar 

  • Thoquet P, Gherardi M, Journet E-P, Kereszt A, Ane J-M, Prosperi J-M, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  Google Scholar 

  • van der Mensbrugghe D, Osorio Rodarte I, Burns A, Baffes J (2009) How to feed the world in 2050: Macroeconomic environment, commodity markets—a longer term outlook. The World Bank & FAO. http://mpra.ub.uni-muenchen.de/19061/. Accessed 12 Oct 2009

  • van Dongen JT, Ammerlaan AMH, Wouterlood M, van Aelst AC, Borstlap AC (2003) Structure of the developing pea seed coat and the post‐phloem transport pathway of nutrients. Annals Bot 91:729–737

    Article  CAS  Google Scholar 

  • Veitch NC (2007) Isoflavonoids of the leguminosae. Nat Prod Rep 24:417–464

    Article  PubMed  CAS  Google Scholar 

  • Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580

    Article  PubMed  CAS  Google Scholar 

  • Verdier J et al (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 109(5):1766–1771. doi:10.1073/pnas.112091610

  • Walling L, Drews GN, Goldberg RB (1986) Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci U S A 83:2123–2127

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Grusak MA (2005) Structure and development of Medicago truncatula pod wall and seed coat. Annals Bot 95:737–747

    Article  Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 2:169–174

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201

    Article  PubMed  CAS  Google Scholar 

  • Young ND et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524. doi:10.1038/nature10625

    Google Scholar 

  • Zhao J, Dixon RA (2009) MATE Transporters facilitate vacuolar uptake of epicatechin 3’-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Udvardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verdier, J., Benedito, V.A., Udvardi, M.K. (2012). The Medicago truncatula Gene Expression Atlas (MtGEA): A Tool for Legume Seed Biology and Biotechnology. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_7

Download citation

Publish with us

Policies and ethics