Skip to main content

Advertisement

Log in

Impact of temperature on vacuum pyrolysis of Syagrus coronata for biochar production

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The use of biomass obtained by pyrolysis has received great attention due to its favorable characteristics to the improvement of soil quality for agricultural purposes, soil remediation against several types of contaminants and great potential for carbon sequestration. This study aimed to evaluate the physical–chemical characteristics of biochar produced from the endocarp of Syagrus coronata. It was determined the best operational conditions to obtain a biochar with good features to be used in soil as fertilizer. The thermal gravimetric analysis (TGA/DTGA), elemental analysis (EDX), scanning electron microscopy and infrared spectroscopy (FT-IR) techniques allowed the finding that the pyrolyzed at 400 °C was the one that presented a greater stability and more suitable characteristics, in comparison to the other materials. The material in that condition is more favorable to be used as a natural fertilizer to improve the ground standard and, consequently, to stimulate the agricultural productivity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Zhong B, Shafi M, Ma J, Guo J, Wu J, Ye Z, Liu D, Jin H (2019) Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere 219:510–516. https://doi.org/10.1016/j.chemosphere.2018.11.159

    Article  Google Scholar 

  2. Li Y, Li Y, Chang SX, Yang Y, Fu S, Jiang P, Luo Y, Yang M, Chen Z, Hu S, Zhao M, Liang X, Xu Q, Zhou G, Zhou J (2018) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol Biochem 122:173–185. https://doi.org/10.1016/j.soilbio.2018.04.019

    Article  Google Scholar 

  3. Derakhshan-Nejad Z, Jung MC (2019) Remediation of multi-metal contaminated soil using biochars from rice husk and maple leaves. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-018-0805-7

    Article  Google Scholar 

  4. Do PTM, Ueda T, Kose R et al (2019) Properties and potential use of biochars from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-018-0768-8

    Article  Google Scholar 

  5. Bera T, Purakayastha TJ, Patra AK, Datta SC (2018) Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-017-0675-4

    Article  Google Scholar 

  6. Yue Y, Cui L, Lin Q, Li G, Zhao X (2017) Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 173:551–556. https://doi.org/10.1016/j.chemosphere.2017.01.096

    Article  Google Scholar 

  7. Amin FR, Huang Y, He Y et al (2016) Clean Technol Environ Policy 18:1457. https://doi.org/10.1007/s10098-016-1218-8

    Article  Google Scholar 

  8. Bilba K, Arsene MA, Ouensanga A (2007) Study of banana and coconut fibers. Botanical composition, thermal degradation and textural observations. Biores Technol 98(1):58–68. https://doi.org/10.1016/j.biortech.2005.11.030

    Article  Google Scholar 

  9. Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89(2):198–203. https://doi.org/10.1016/j.chemosphere.2012.05.085

    Article  Google Scholar 

  10. Brasil JH (2017) Plantas que curam. http://www.plantasquecuram.com.br/. Accessed 13 Dec 2018

  11. Agra MDF, Silva KN, Basílio IJLD, Freitas PFd, Barbosa-Filho JM (2008) Survey of medicinal plants used in the region Northeast of Brazil. Revista brasileira de Farmacognosia 18(3):472–508

    Article  Google Scholar 

  12. Belviso S, Ghirardello D, Giordano M, Ribeiro GS, Alves JD, Parodi S, Risso S, Zeppa G (2013) Phenolic composition, antioxidant capacity and volatile compounds of licuri (Syagrus coronata (Martius) Beccari) fruits as affected by the traditional roasting process. Food Res Int 51(1):39–45

    Article  Google Scholar 

  13. Singh P, Singh R, Borthakur A, Madhav S, Kumar V, Tiwary SD, Srivastava VC, Mishra PK (2018) Exploring temple floral refuse for biochar production as a closed loop perspective for environmental management. Waste Manag 77:78–86. https://doi.org/10.1016/j.wasman.2018.04.041

    Article  Google Scholar 

  14. Vieira GEG, Nunes AP, Teixeira LF, Gracielly A, Colen N (2014) Biomassa: uma visão dos processos de pirólise. Revista Liberato 15:105–212

    Google Scholar 

  15. Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli MA (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77(1):47–53. https://doi.org/10.1016/j.carbpol.2008.12.005

    Article  Google Scholar 

  16. Liu G, Xu Q, Dong X, Yang J, Pile LS, Wang GG, Wang F (2016) Effect of protective gas and pyrolysis temperature on the biochar produced from three plants of gramineae physical and chemical characterization. Waste Biomass Valor 7:1469. https://doi.org/10.1007/s12649-016-9534-0

    Article  Google Scholar 

  17. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci Manuf 36(8):1110–1118. https://doi.org/10.1016/j.compositesa.2005.01.004

    Article  Google Scholar 

  18. Stevulova N, Cigasova J, Estokova A, Terpakova E, Geffert A, Kacik F et al (2014) Properties characterization of chemically modified hemp hurds. Materials (Basel) 7(12):8131–8150

    Article  Google Scholar 

  19. Ertaş M, Acemioĝlu B, Alma MH, Usta M (2010) Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. J Hazard Mater 183(1–3):421–427. https://doi.org/10.1016/j.jhazmat.2010.07.041

    Article  Google Scholar 

  20. Keiluweit M, Nico PS, Johnson M, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. https://doi.org/10.1021/es9031419

    Article  Google Scholar 

  21. Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE 11(6):e0156894. https://doi.org/10.1371/journal.pone.0156894

    Article  Google Scholar 

  22. Okoroigwe E, Li Z, Stuecken T, Saffron C, Onyegegbu S (2012) Pyrolysis of Gmelina arborea wood for bio-oil/bio-char production: physical and chemical characterisation of products. J Appl Sci 12(4):369–374

    Article  Google Scholar 

  23. Brown TR, Wright MM, Brown RC (2011) Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod Bioref 5:54–68. https://doi.org/10.1002/bbb.254

    Article  Google Scholar 

  24. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    Article  Google Scholar 

  25. Della Rocca DA, Horowitz GI, Bonelli PR, Cassanelo MC, Cukierman AL (1997) Olive stones pyrolysis: chemical, textural and kinetic characterization. In: Boocock DGB (ed) Development in thermochemical biomass conversion. Blackie, London

    Google Scholar 

  26. Demirbas A (2006) Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources Part A 28(5):413–422. https://doi.org/10.1080/009083190927895

    Article  Google Scholar 

  27. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41(6):1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016

    Article  Google Scholar 

  28. Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  Google Scholar 

  29. Ding Y, Liu Y, Liu S, Huang X, Li Z, Tan X, Zeng G, Zhou L (2017) Potential benefits of biochar in agricultural soils: a review. Pedosphere 27(4):645–661. https://doi.org/10.1016/S1002-0160(17)60375-8

    Article  Google Scholar 

  30. Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28(8):461–468. https://doi.org/10.1016/j.tree.2013.01.001

    Article  Google Scholar 

  31. Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manage 146:189–197. https://doi.org/10.1016/j.jenvman.2014.08.003

    Article  Google Scholar 

  32. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crops Prod 28(2):190–198. https://doi.org/10.1016/j.indcrop.2008.02.012

    Article  Google Scholar 

  33. Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrol 101:72–78. https://doi.org/10.1016/j.jaap.2013.02.010

    Article  Google Scholar 

  34. Wang Y, Hu Y, Zhao X, Wang S, Xing G (2013) Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 27(10):5890–5899. https://doi.org/10.1021/ef400972z

    Article  Google Scholar 

  35. Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112

    Article  Google Scholar 

  36. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  Google Scholar 

  37. Ahmad M, Lee SS, Dou XM, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technol 118:536–544

    Article  Google Scholar 

  38. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol 102:3488–3497

    Article  Google Scholar 

  39. Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531. https://doi.org/10.1016/j.fuproc.2007.01.001

    Article  Google Scholar 

  40. Ding WC, Dong XL, Ime IM, Gao B, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74

    Article  Google Scholar 

  41. Xu G, Lv Y, Sun J, Shao H, Wei L (2012) Recent advances in biochar applications in agricultural soils: benefits and environmental implications. Clean Soil Air Water 40:1093–1098. https://doi.org/10.1002/clen.201100738

    Article  Google Scholar 

  42. Titiladunayo IF, McDonald AG, Fapetu OP (2012) Waste Biomass Valor 3:311. https://doi.org/10.1007/s12649-012-9118-6

    Article  Google Scholar 

  43. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493. https://doi.org/10.1016/S0146-6380(99)00120-5

    Article  Google Scholar 

  44. Kawamoto HJ (2017) Wood Sci 63:117. https://doi.org/10.1007/s10086-016-1606-z

    Article  Google Scholar 

  45. Yu J, Sun L, Berrueco C, Fidalgo B, Paterson N, Millan M (2018) Influence of temperature and particle size on structural characteristics of chars from beechwood pyrolysis. J Anal Appl Pyrolysis 130:127–134. https://doi.org/10.1016/j.jaap.2018.01.018

    Article  Google Scholar 

  46. Kim D, Lee K, Bae D, Park KY (2017) Characterizations of biochar from hydrothermal carbonization of exhausted coffee residue. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-016-0572-2

    Article  Google Scholar 

  47. Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank to National Council for Scientific and Technological Development (CNPq/Brazil), Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil) and Foundation for Research Support of the State of Alagoas (FAPEAL/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Meili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L.E.R., Meili, L., Soletti, J.I. et al. Impact of temperature on vacuum pyrolysis of Syagrus coronata for biochar production. J Mater Cycles Waste Manag 22, 878–886 (2020). https://doi.org/10.1007/s10163-020-00978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-00978-8

Keywords

Navigation