Skip to main content
Log in

An empirical analysis of mtSSRs: could microsatellite distribution patterns explain the evolution of mitogenomes in plants?

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Microsatellites (SSRs) are tandem repeat sequences in eukaryote genomes, including plant cytoplasmic genomes. The mitochondrial genome (mtDNA) has been shown to vary in size, number, and distribution of SSRs among different plant groups. Thus, SSRs contribute with genomic diversity in mtDNAs. However, the abundance, distribution, and evolutionary significance of SSRs in mtDNA from a wide range of algae and plants have not been explored. In this study, the mtDNAs of 204 plant and algal species were investigated related to the presence of SSRs. The number of SSRs was positively correlated with genome size. Its distribution is dependent on plant and algal groups analyzed, although the cluster analysis indicates the conservation of some common motifs in algal and terrestrial plants that reflect common ancestry of groups. Many SSRs in coding and non-coding regions can be useful for molecular markers. Moreover, mitochondrial SSRs are highly abundant, representing an important source for natural or induced genetic variation, i.e., for biotechnological approaches that can modulate mtDNA gene regulation. Thus, this comparative study increases the understanding of the plant and algal SSR evolution and brings perspectives for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz D, Schlotterer C (1994) Simple sequences. Curr Op Gen Dev 4:832–837

    Article  CAS  Google Scholar 

  • Gao C, Ren X, Mason AS, Li J, Wang W, Xiao M, Fu D (2013) Revisiting an important component of plant genomes: microsatellites. Funct Pollut Biol 40:645–661

    Article  CAS  Google Scholar 

  • Li L, Wang B, Liu Y, Qiu YL (2009) The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 68:665–678

    Article  CAS  PubMed  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Gen Mol Biol 29:294–307

    Article  CAS  Google Scholar 

  • Zhao Z, Guo C, Sutharzan S, Li P, Echt CS, Zhang J, Liang C (2014) Genome-wide analysis of tandem repeats in plants and green algae. G3: Ge Gen Genet 4:67–78

    Article  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  CAS  PubMed  Google Scholar 

  • Devey DS, Chase MW, Clarkson JJ (2009) A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in non-coding plastid regions. Taxon 58:7–15

    Article  Google Scholar 

  • Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. Plos One 6:e21298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang JX, Wang ZH, Tang BR, Xiao L, Ai X, Yi ZL (2012) Development of novel chloroplast microsatellite markers for Miscanthus species (Poaceae). Am J Bot 99:e230-233

    Article  PubMed  Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genomics 61:665–677

    Article  CAS  Google Scholar 

  • Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Gen 42:158–161

    CAS  Google Scholar 

  • Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2006) Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformation 23:1–4

    Google Scholar 

  • Fauron C, Allen J, Clifton S, Newton K (2004) Plant mitochondrial genomes. In: Daniell H., Chase C. (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht.

  • Kuntal H, Sharma V (2011) In silico analysis of SSRs in mitochondrial genomes of plants. Omics 15:783–789

    Article  CAS  PubMed  Google Scholar 

  • Zhao CX, Zhu RL, Liu Y (2016) Simple sequence repeats in bryophyte mitochondrial genomes. Mitoch DNA Part A 27:191–197

    Article  CAS  Google Scholar 

  • Filiz E (2014) SSRs mining of Brassica species in mitochondrial genomes: bioinformatic approaches. Hortic Environ Biotecnol 54:548–553

    Article  CAS  Google Scholar 

  • Liu Y, Medina R, Goffinet B (2014) 350 My of mitochondrial genome stasis in mosses, an early land plant lineage. Mol Biol Evol 31:2586–2591

    Article  CAS  PubMed  Google Scholar 

  • Raju GV, Rao PS, Rao CS, Sekhar VC, Mudunuri SB (2015) Microsatellite repeats in mitochondrial genomes: a bioinformatic analysis. Proc Int Conf Adv Res Comp Sci Eng 40:1–5

    Google Scholar 

  • Hancock JM (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. In Microsatellites: evolution and applications. Edited by Oxford: Goldstein DB and Schlotterer C, 1–9.

  • Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S (2015) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290

    Article  CAS  PubMed  Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    Article  CAS  PubMed  Google Scholar 

  • Kitazaki K, Kubo T (2010) Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome. J Bot 620137.

  • Race HL, Herrmann RG, Martin W (1999) Why have organelles retained genomes? Trends Gen 15:364–370

    Article  CAS  Google Scholar 

  • Kuntal H, Sharma V, Daniell H (2012) Microsatellite analysis in organelle genomes of Chlorophyta. Bioinformation 8:255–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand K, Kumar S, Alam A, Shankar A (2019) Mining of microsatellites in mitochondrial genomes of order Hypnales (Bryopsida). Proc Sci Tod 6:635–638

    Google Scholar 

  • De Watcher R (1981) The number of repeats expected in random nucleic acid sequences and found in genes. J Theor Biol 91:71–98

    Article  Google Scholar 

  • Ceplitis A, Su Y, Lascoux M (2005) Bayesian inference of evolutionary history from chloroplast microsatellites in the cosmopolitan weed Capsella bursa pastoris (Brassicaceae). Mol Ecol 14:4221–4233

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Säll T, Lind-Halldén C, Halldén C (2007) Evolution of chloroplast mononucleotide microsatellites in Arabidopsis thaliana. Theor Appl Genet 114:223–235

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Fang L, Chen J, Hu Y, Si Z, Wang S, Zhang T (2015) Genome-wide mining, characterization, and development of microsatellite markers in Gossypium species. Sci Rep 5:10638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victoria FC, Da Maia LC, De Oliveira AC (2011) In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Avvaru AK, Sowpati DT et al (2019) Patterns of microsatellite distribution across eukaryotic genomes. BMC Genom 20:153

    Article  Google Scholar 

  • Tian X, Strassmann JE, Queller DC (2011) Genome nucleotide composition shapes variation in simple sequence repeats. Mol Biol Evol 28:899–909

    Article  CAS  PubMed  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Gen 30:194

    Article  CAS  Google Scholar 

  • Qin Z, Wang Y, Wang Q, Li A, Hou F, Zhang L (2015) Evolution analysis of simple sequence repeats in plant genome. PloS One 10:e0144108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Pombert JF, Beauchamp P, Otis C, Lemieux C, Turmel M (2006) The complete mitochondrial DNA sequence of the green alga Oltmannsiellopsis viridis: evolutionary trends of the mitochondrial genome in the Ulvophyceae. Curr Gen 50:137–147

    Article  CAS  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–8

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Hu Z, Liu W, Li J, Wang W, Liang Z, Wang F, Sun X (2016) Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development. Sci Rep 6:18947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sousa F, Civáň P, Brazão J, Foster PG, Cox CJ (2020) The mitochondrial phylogeny of land plants shows support for Setaphyta under composition-heterogeneous substitution models. Peer J 8:e8995

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong B, Sun L, Penny D (2015) The origin of land plants: a phylogenomic perspective. Evol Bioinform Online 11:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vries J, Stanton A, Archibald JM, Gould SB (2016) Streptophyte terrestrialization in light of plastid evolution. Trends Proc Sci 21(6):467–476

    Article  CAS  Google Scholar 

  • Bowles AMC, Bechtold U, Paps J (2020) The origin of land plants is rooted in two bursts of genomic novelty. Curr Biol 30(3):530-536.e2

    Article  CAS  PubMed  Google Scholar 

  • Rich MK, Delaux PM (2020) Plant evolution: when Arabidopsis is more ancestral than Marchantia. Curr Biol 30(11):R642–R644

    Article  CAS  PubMed  Google Scholar 

  • Xue JY, Liu Y, Li L, Wang B, Qiu YL (2010) The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr Gen 56:53–61

    Article  CAS  Google Scholar 

  • Liu Y, Xue JYY, Wang B, Li L, Qiu YLL (2011) The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS One 6:e25836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field D, Wills C (1998) Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc Nat Acad Sci 95:1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina R, Johnson M, Liu Y, Wilding N, Hedderson TA, Wickett N, Goffinet B (2018) Evolutionary dynamism in bryophytes: phylogenomic inferences confirm rapid radiation in the moss family Funariaceae. Mol Phylogenet Evol 120:240–247

    Article  PubMed  Google Scholar 

  • Sterck L, Rombauts S, Jansson S, Sterky F, Rouzé P, Van de Peer Y (2005) EST data suggest that poplar is an ancient polyploid. New Phytol 167(1):165–70

    Article  PubMed  Google Scholar 

  • Zhang L, Zuo K, Zhang F, Cao Y, Wang J, Zhang Y, Tang K (2006) Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Gen 7:323

    Article  CAS  Google Scholar 

  • Knoop V (2010) Looking for sense in the nonsense: a short review of non-coding organellar DNA elucidating the phylogeny of bryophytes. Trop Biol 31:51–60

    Google Scholar 

  • Guo W, Zhu A, Fan W, Mower JP (2017) Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. New Phyton 213:391–403

    Article  CAS  Google Scholar 

  • Guo W, Grewe F, Fan W, Young GJ, Knoop V, Palmer JD, Mower JP (2016) Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol Biol Evol 33:1448–60

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zeng G, Tan Z, Jiang Zhang J, Zhang C, Peng J (2011) Compound microsatellites in complete Escherichia coli genomes. FEBS Lett 585:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Gen Res 10:72–80

    CAS  Google Scholar 

  • Li B, Xia Q, Lu C, Zhou Z, Xiang Z (2004) Analysis on frequency and density of microsatellites in coding sequences of several eukaryotic genomes. Genom Prot Bioinf 2:24–31

    Article  CAS  Google Scholar 

  • Mignouna H, Virmani SS, Briquet M (1987) Mitochondrial DNA modifications associated with cytoplasmic male sterility in Rice. Theor Appl Gen 74:666–669

    Article  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Da Maia LCD, Souza VQD, Kopp MM, Carvalho FIFD, Oliveira ACD (2009) Tandem repeat distribution of gene transcripts in three plant families. Genet Mol Biol 32:822–833

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Xu Y, McCouch SR (2001) Nuclear- and chloroplast-microsatellite variation in A-genome species of rice. Genome 44:658–666

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitoch 7:177–194

    Article  CAS  Google Scholar 

  • Da Maia LC, Palmieri DA, De Souza VQ, Kopp MM, de Carvalho FIF, Costa de Oliveira A (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Gen 412696.

  • Mudunuri BS, Nagarajaram AH (2007) IMEx: imperfect microsatellite extractor. Bioinformatics 23:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Alam CM, Iqbal A, Tripathi D, Sharfuddin C, Ali S (2017) Microsatellite diversity and complexity in eighteen Staphylococcus phage genomes. Gene Cell Tissue 4:3

    Google Scholar 

  • Mrazek J (2006) Analysis of distribution indicates diverse functions of simple sequence repeats in Mycoplasma genomes. Mol Biol Evol 23:1370–1385

    Article  CAS  PubMed  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullback S (1951) Leibler RA (1951) On information and sufficiency. Ann Math Statist 22:79–86

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:242–5

    Article  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformation 24:861–862

    Article  CAS  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Gen 52:267–274

    Article  CAS  Google Scholar 

  • Novák P, Robledillo LA, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nuc Acids Res 45(12)

    Article  CAS  Google Scholar 

  • Negm S, Greenberg A, Larracuente AM, Sproul JS (2020) RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Mol Ecol Resour.

  • Vieira ML, Santini L, Diniz AL, Munhoz C (2016) Microsatellite markers: what they mean and why they are so useful. Genet mol biol 39(3):312–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi S, Takahashi D, Setoguchi H, Isagi Y (2018) Genetic structure of the clonal herb Tanakaea radicans (Saxifragaceae) at multiple spatial scales, revealed by nuclear and mitochondrial microsatellite markers. Plant Species Biol 33(1):81–87

    Article  Google Scholar 

  • Khera P, Saxena R, Sameerkumar CV et al (2015) Mitochondrial SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica 206:737–746

    Article  CAS  Google Scholar 

  • Gupta P, Varshney R (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa T, Vaughan DA, Kadowaki K (2005) Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor Appl Genet 110(4):696–705

    Article  CAS  PubMed  Google Scholar 

  • Rajendrakumar P, Biswal AK, Balachandran SM, Sundaram RM (2008) In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships. In Silico Biol 8(2):87–104

    CAS  PubMed  Google Scholar 

  • Uthaipaisanwong P, Somyong S, Tangphatsornruang S, Yoocha T, Jantasuriyarat C (2017) Development and characterization of simple sequence repeats derived from mitochondrial genome of oil palm using next generation sequencing. Thai J Sci Technol 6(3):288–300

    Google Scholar 

  • Madhav MS, Rajendrakumar P, Sivaraju K, Vishalakshi B, Devi SR (2015) Phylogenetic reconstruction of five Solanaceous species by genome-wide analysis of simple sequence repeats in organellar genomes and their utility in establishing species relationships of genus Nicotiana. Curr Trends Biotechnol Pharmacy 9(2):107–116

    CAS  Google Scholar 

  • Kocaman B, Sevim TOY, Marakli S (2020) Application of different molecular markers in biotechnology. J Sci Lett 2(2):98–113

    Article  Google Scholar 

  • Merritt BJ, Culley TM, Avanesyan A, Stokes R, Brzyski J (2015) An empirical review: characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl Plant Sci 17;3(8):apps.1500025

  • Varshney R, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biot 23:48–55

    Article  CAS  Google Scholar 

  • Cabañas N, Becerra A, Romero D et al (2020) Repetitive DNA profile of the amphibian mitogenome. BMC Bioinformatics 21:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zhang Y, Zhang H et al (2019) Complete mitochondrial genomes of eight seahorses and pipefishes (Syngnathiformes: Syngnathidae): insight into the adaptive radiation of syngnathid fishes. BMC Evol Biol 19:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong S, Zhaom C, Zhang S, Zhang L, Wu H, Liu H, Zhu R, Jia Y, Goffinet B, Liu Y (2019) Mitochondrial genomes of the early land plant lineage liverworts (Marchantiophyta): conserved genome structure, and ongoing low frequency recombination. BMC Genomics 20(1):953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Wang S, He K et al (2017) Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genomics 18:848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole LW, Guo W, Mower JP, Palmer JD (2018) High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants. Mol Biol Evol 35(11):2773–2785

    CAS  PubMed  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harr B, Todorova J, Schlotterer C (2002) Mismatch repair-driven mutational bias in D. melanogaster. Mol Cell 10(1):199–205

    Article  CAS  PubMed  Google Scholar 

  • Wynn EL, Christensen AC (2019) Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution. G3 (Bethesda) 9(2):549-559

  • Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, Christensen AC (2019) The alternative reality of plant mitochondrial DNA: one ring does not rule them all. PLoS Genet 30;15(8):e1008373

  • Song X, Yang Q, Bai Y et al (2021) Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants. Hort Res, 8.

  • Karlin S, Burge CB (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11(7):283–90

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no external funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -Finance Code 001, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq -process n° 407591/2018-4), and from Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Contributions

K.E.J.F. wrote the main manuscript text and C.B. prepared figures. F.C.V. conducted the RE analysis and contributed to the main manuscript text. V.E.V, C. P., and L.C.M. made contributions to the discussion. A.C. led the research. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Antonio Costa de Oliveira.

Ethics declarations

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, K.E.J., Busanello, C., Viana, V.E. et al. An empirical analysis of mtSSRs: could microsatellite distribution patterns explain the evolution of mitogenomes in plants?. Funct Integr Genomics 22, 35–53 (2022). https://doi.org/10.1007/s10142-021-00815-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-021-00815-7

Keywords

Navigation