Skip to main content

Utility of the Mitochondrial Genome in Plant Taxonomic Studies

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray MW, Burger G, Franz Lang B (2001) The origin and early evolution of mitochondria. Genome Biol 2:reviews1018. https://doi.org/10.1186/gb-2001-2-6-reviews1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andersson SGE, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–268. https://doi.org/10.1016/s0966-842x(98)01312-2

    Article  CAS  PubMed  Google Scholar 

  3. Palmer JD, Adams KL, Cho Y et al (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci U S A 97:6960–6966. https://doi.org/10.1073/pnas.97.13.6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adams KL, Daley DO, Qiu YL et al (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357

    Article  CAS  Google Scholar 

  5. Adams KL, Qiu YL, Stoutemyer M et al (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci U S A 99:9905–9912. https://doi.org/10.1073/pnas.042694899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams K, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395. https://doi.org/10.1016/S1055-7903(03)00194-5

    Article  CAS  PubMed  Google Scholar 

  7. Lonsdale DM, Hodge TP, Fauron CMR (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12:9249–9261. https://doi.org/10.1093/nar/12.24.9249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 3074:437–440. https://doi.org/10.1038/307437a0

    Article  Google Scholar 

  9. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97. https://doi.org/10.1007/bf02143500

    Article  CAS  PubMed  Google Scholar 

  10. Backert S, Nielsen BL, Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2:477–483. https://doi.org/10.1016/S1360-1385(97)01148-5

    Article  Google Scholar 

  11. Morley SA, Nielsen BL (2017) Plant mitochondrial DNA. Front Biosci 22:1023–1032. https://doi.org/10.2741/4531

    Article  CAS  Google Scholar 

  12. Kozik A, Rowan BA, Lavelle D et al (2019) The alternative reality of plant mitochondrial DNA: one ring does not rule them all. PLoS Genet 15:e1008373. https://doi.org/10.1371/journal.pgen.1008373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. https://doi.org/10.1093/nar/27.8.1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bullerwell CE, Gray MW (2004) Evolution of the mitochondrial genome: protist connections to animals, fungi and plants. Curr Opin Microbiol 7:528–534. https://doi.org/10.1016/j.mib.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  15. Sloan DB, Alverson AJ, Chuckalovcak JP et al (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241. https://doi.org/10.1371/journal.pbio.1001241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alverson AJ, Wei X, Rice DW et al (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448. https://doi.org/10.1093/molbev/msq029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marienfeld J, Unseld M, Brennicke A (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci 4:495–502. https://doi.org/10.1016/S1360-1385(99)01502-2

    Article  CAS  PubMed  Google Scholar 

  18. Choi IS, Schwarz EN, Ruhlman TA et al (2019) Fluctuations in Fabaceae mitochondrial genome size and content are both ancient and recent. BMC Plant Biol 19:448. https://doi.org/10.1186/s12870-019-2064-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14. https://doi.org/10.1016/j.mito.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Wu YW, Shih ACC et al (2007) Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 Mya. Mol Biol Evol 24:2040–2048. https://doi.org/10.1093/molbev/msm133

    Article  CAS  PubMed  Google Scholar 

  21. Rice DW, Alverson AJ, Richarson AO et al (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473. https://doi.org/10.1126/science.1246275

    Article  CAS  PubMed  Google Scholar 

  22. Gandini CL, Sanchez-Puerta MV (2017) Foreign plastid sequences in plant mitochondria are frequently acquired via mitochondrion-to-mitochondrion horizontal transfer. Sci Rep 7:43402. https://doi.org/10.1038/srep43402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanchez-Puerta M, García LE, Wohlfeiler J et al (2017) Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant. New Phytol 214:376–387. https://doi.org/10.1111/nph.14361

    Article  CAS  PubMed  Google Scholar 

  24. Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159. https://doi.org/10.1007/s00294-006-0082-1

    Article  CAS  PubMed  Google Scholar 

  25. Schuster W, Brennicke A (1994) The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45:61–78. https://doi.org/10.1146/annurev.pp.45.060194.000425

    Article  CAS  Google Scholar 

  26. Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes-though this be madness, yet there’s method in’t. J Exp Bot 61:657–671. https://doi.org/10.1093/jxb/erp361

    Article  CAS  PubMed  Google Scholar 

  27. Cole LW, Guo W, Mower JP et al (2018) High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants. Mol Biol Evol 35:2773–2785. https://doi.org/10.1093/molbev/msy176

    Article  CAS  PubMed  Google Scholar 

  28. Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180. https://doi.org/10.1016/S1360-1385(98)01235-7

    Article  Google Scholar 

  29. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131. https://doi.org/10.1111/j.1365-294x.1995.tb00201.x

    Article  CAS  PubMed  Google Scholar 

  30. Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430. https://doi.org/10.1046/j.1471-8286.2002.00263.x

    Article  CAS  Google Scholar 

  31. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058. https://doi.org/10.1073/pnas.84.24.9054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaut BS, Morton BR, McCaig BC et al (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A 93:10274–10279. https://doi.org/10.1073/pnas.93.19.10274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43. https://doi.org/10.1023/A:1006319803002

    Article  CAS  PubMed  Google Scholar 

  34. Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831. https://doi.org/10.1016/J.YMPEV.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  35. Cho Y, Mower JP, Qiu YL et al (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci U S A 101:17741–17746. https://doi.org/10.1073/pnas.0408302101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parkinson CL, Mower JP, Qiu YL et al (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73. https://doi.org/10.1186/1471-2148-5-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mower JP, Touzet P, Gummow JS et al (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7:135. https://doi.org/10.1186/1471-2148-7-135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barr CM, Keller SR, Ingvarsson PK et al (2007) Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. Mol Biol Evol 24:1783–1791. https://doi.org/10.1093/molbev/msm106

    Article  CAS  PubMed  Google Scholar 

  39. Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148. https://doi.org/10.1146/annurev.genet.35.102401.090231

    Article  CAS  PubMed  Google Scholar 

  40. Greiner S, Sobanski J, Bock R (2015) Why are most organelle genomes transmitted maternally? BioEssays 37:80–94. https://doi.org/10.1002/bies.201400110

    Article  CAS  PubMed  Google Scholar 

  41. Petit RJ, Vendramin GG (2007) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of Southern Europe Refugia. Springer, Dordrecht, pp 23–101. https://doi.org/10.1007/1-4020-4904-8_2

    Chapter  Google Scholar 

  42. Petit RJ, Duminil J, Fineschi S et al (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. https://doi.org/10.1111/j.1365-294X.2004.02410.x

    Article  CAS  PubMed  Google Scholar 

  43. Oda K, Yamato K, Ohta E et al (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7. https://doi.org/10.1016/0022-2836(92)90708-r

    Article  CAS  PubMed  Google Scholar 

  44. Dumolin-Lapegue S, Kremer A, Petit RJ (1999) Are chloroplast and mitochondrial DNA variation species independent in oaks? Evolution 53:1406–1413. https://doi.org/10.1111/j.1558-5646.1999.tb05405.x

    Article  CAS  PubMed  Google Scholar 

  45. Govindarajulu R, Parks M, Tennessen JA et al (2015) Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species. Am J Bot 102:544–554. https://doi.org/10.3732/ajb.1500026

    Article  PubMed  Google Scholar 

  46. Hosaka K, Sanetomo R (2009) Comparative differentiation in mitochondrial and chloroplast DNA among cultivated potatoes and closely related wild species. Genes Genet Syst 84:371–378. https://doi.org/10.1266/ggs.84.371

    Article  CAS  PubMed  Google Scholar 

  47. Jaramillo-Correa JP, Beaulieu J, Ledig FT et al (2006) Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Mol Ecol 15:2787–2800. https://doi.org/10.1111/j.1365-294X.2006.02974.x

    Article  CAS  PubMed  Google Scholar 

  48. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594. https://doi.org/10.1073/pnas.212285399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rydin C, Wikström N, Bremer B (2017) Conflicting results from mitochondrial genomic data challenge current views of Rubiaceae phylogeny. Am J Bot 104:1522–1532. https://doi.org/10.3732/ajb.1700255

    Article  CAS  PubMed  Google Scholar 

  50. Van de Paer C, Bouchez O, Besnard G (2018) Prospects on the evolutionary mitogenomics of plants: a case study on the olive family (Oleaceae). Mol Ecol Resour 18:407–423. https://doi.org/10.1111/1755-0998.12742

    Article  CAS  PubMed  Google Scholar 

  51. Levings CS III, Pring DR (1976) Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science 193:158–160. https://doi.org/10.1126/science.193.4248.158

    Article  CAS  PubMed  Google Scholar 

  52. Quetier F, Vedel F (1977) Heterogenous population of mitochondrial DNA molecules in higher plants. Nature 268:365–368. https://doi.org/10.1038/268365a0

    Article  CAS  Google Scholar 

  53. Desplanque B, Viard F, Bernard J et al (2000) The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies. Mol Ecol 9:141–154. https://doi.org/10.1046/j.1365-294x.2000.00843.x

    Article  CAS  PubMed  Google Scholar 

  54. Besnard G, Khadari B, Baradat P et al (2002) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor Appl Genet 105:139–144. https://doi.org/10.1007/s00122-002-0868-6

    Article  CAS  PubMed  Google Scholar 

  55. Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6:393–397. https://doi.org/10.1046/j.1365-294x.1997.00193.x

    Article  CAS  PubMed  Google Scholar 

  56. Froelicher Y, Mouhaya W, Bassene JB et al (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genomes 7:49–61. https://doi.org/10.1007/s11295-010-0314-x

    Article  Google Scholar 

  57. Jaramillo-Correa JP, Bousquet J, Beaulieu J et al (2003) Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. Theor Appl Genet 106:1353–1367. https://doi.org/10.1007/s00122-002-1174-z

    Article  CAS  PubMed  Google Scholar 

  58. Jeandroz S, Bastien D, Chandelier A et al (2002) A set of primers for amplification of mitochondrial DNA in Picea abies and other conifer species. Mol Ecol Notes 2:389–392. https://doi.org/10.1046/j.1471-8286.2002.00271.x

    Article  CAS  Google Scholar 

  59. Boonruangrod R, Desai D, Fluch S et al (2008) Identification of cytoplasmic ancestor gene-pools of Musa acuminata Colla and Musa balbisiana Colla and their hybrids by chloroplast and mitochondrial haplotyping. Theor Appl Genet 118:43–55. https://doi.org/10.1007/s00122-008-0875-3

    Article  CAS  PubMed  Google Scholar 

  60. Godbout J, Jaramillo-Correa JP, Beaulieu J et al (2005) A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. Mol Ecol 14:3497–3512. https://doi.org/10.1111/j.1365-294X.2005.02674.x

    Article  CAS  PubMed  Google Scholar 

  61. San Jose-Maldia L, Uchida K, Tomaru N (2009) Mitochondrial DNA variation in natural populations of Japanese larch (Larix kaempferi). Silvae Genet 58:234–241. https://doi.org/10.1515/sg-2009-0030

    Article  Google Scholar 

  62. Moriguchi Y, Kang KS, Lee KY et al (2009) Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondrial and nuclear DNA markers. J Plant Res 122:153–160. https://doi.org/10.1007/s10265-008-0210-8

    Article  CAS  PubMed  Google Scholar 

  63. Naydenov K, Senneville S, Beaulieu J et al (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7:233. https://doi.org/10.1186/1471-2148-7-233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12:1487–1495. https://doi.org/10.1046/j.1365-294x.2003.01817.x

    Article  CAS  PubMed  Google Scholar 

  65. Bastien D, Favre JM, Collignon AM et al (2003) Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]. Theor Appl Genet 107:574–580. https://doi.org/10.1007/s00122-003-1284-2

    Article  CAS  PubMed  Google Scholar 

  66. Honma Y, Yoshida Y, Terachi T et al (2011) Polymorphic minisatellites in the mitochondrial DNAs of Oryza and Brassica. Curr Genet 57:261–270. https://doi.org/10.1007/s00294-011-0345-3

    Article  CAS  PubMed  Google Scholar 

  67. Yoshida Y, Matsunaga M, Cheng D et al (2012) Mitochondrial minisatellite polymorphisms in fodder and sugar beets reveal genetic bottlenecks associated with domestication. Biol Plant 56:369. https://doi.org/10.1007/s10535-012-0101-7

    Article  CAS  Google Scholar 

  68. Avtzis DN, Aravanopoulos FA (2011) Host tree and insect genetic diversity on the borderline of natural distribution: a case study of Picea abies and Pityogenes chalcographus (Coleoptera, Scolytinae) in Greece. Silva Fenn 45:157–164. https://doi.org/10.14214/sf.37

    Article  Google Scholar 

  69. Eckert AJ, Tearse BR, Hall BD (2008) A phylogeographical analysis of the range disjunction for foxtail pine (Pinus balfouriana, Pinaceae): the role of Pleistocene glaciation. Mol Ecol 17:1983–1997. https://doi.org/10.1111/j.1365-294X.2008.03722.x

    Article  CAS  PubMed  Google Scholar 

  70. Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188. https://doi.org/10.3732/ajb.92.7.1177

    Article  PubMed  Google Scholar 

  71. Goodall-Copestake WP, Pérez-Espona S, Harris DJ et al (2010) The early evolution of the mega-diverse genus Begonia (Begoniaceae) inferred from organelle DNA phylogenies. Biol J Linn Soc 101:243–250. https://doi.org/10.1111/j.1095-8312.2010.01489.x

    Article  Google Scholar 

  72. Gugger PF, Gonzalez-Rodriguez A, Rodriguez-Correa H et al (2011) Southward Pleistocene migration of Douglas-fir into Mexico: phylogeography, ecological niche modeling, and conservation of “rear edge” populations. New Phytol 189:1185–1199. https://doi.org/10.1111/j.1469-8137.2010.03559.x

    Article  PubMed  Google Scholar 

  73. Donnelly K, Cottrell J, Ennos RA et al (2017) Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus. Mol Ecol Resour 17:943–954. https://doi.org/10.1111/1755-0998.12646

    Article  CAS  PubMed  Google Scholar 

  74. Malé PJG, Bardon L, Besnard G et al (2014) Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Mol Ecol Resour 14:966–975. https://doi.org/10.1111/1755-0998.12246

    Article  CAS  PubMed  Google Scholar 

  75. Van de Paer C, Hong-Wa C, Jeziorski C et al (2016) Mitogenomics of Hesperelaea, an extinct genus of Oleaceae. Gene 594:197–202. https://doi.org/10.1016/J.GENE.2016.09.007

    Article  PubMed  Google Scholar 

  76. Wang S, Song Q, Li S et al (2018) Assembly of a complete mitogenome of Chrysanthemum nankingense using Oxford Nanopore long reads and the diversity and evolution of Asteraceae mitogenomes. Genes 9:547. https://doi.org/10.3390/genes9110547

    Article  CAS  PubMed Central  Google Scholar 

  77. Fonseca LHM, Lohmann LG (2020) Exploring the potential of nuclear and mitochondrial sequencing data generated through genome-skimming for plant phylogenetics: a case study from a clade of neotropical lianas. J Syst Evol 58:18–32. https://doi.org/10.1111/jse.12533

    Article  Google Scholar 

  78. Wang X, Cheng F, Rohlsen D et al (2018) Organellar genome assembly methods and comparative analysis of horticultural plants. Hortic Res 5:3. https://doi.org/10.1038/s41438-017-0002-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duminil J (2014) Mitochondrial genome and plant taxonomy. In: Besse P (ed) Molecular plant taxonomy. Methods in molecular biology (Methods and protocols), vol 1115. Humana Press, Totowa, NJ, pp 121–140. https://doi.org/10.1007/978-1-62703-767-9_6

    Chapter  Google Scholar 

  80. Straub SCK, Parks M, Weitemier K et al (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364. https://doi.org/10.3732/ajb.1100335

    Article  CAS  PubMed  Google Scholar 

  81. Zedane L, Hong-Wa C, Murienne J et al (2016) Museomics illuminate the history of an extinct, paleoendemic plant lineage (Hesperelaea, Oleaceae) known from an 1875 collection from Guadalupe Island, Mexico. Biol J Linn Soc 117:44–57. https://doi.org/10.1111/bij.12509

    Article  Google Scholar 

  82. Mariac C, Scarcelli N, Pouzadou J et al (2014) Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol Resour 14:1103–1113. https://doi.org/10.1111/1755-0998.12258

    Article  CAS  PubMed  Google Scholar 

  83. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Duminil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duminil, J., Besnard, G. (2021). Utility of the Mitochondrial Genome in Plant Taxonomic Studies. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics