Skip to main content

Advertisement

Log in

Culturability and Secondary Metabolite Diversity of Extreme Microbes: Expanding Contribution of Deep Sea and Deep-Sea Vent Microbes to Natural Product Discovery

  • Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Microbes from extreme environments do not necessarily require extreme culture conditions. Perhaps the most extreme environments known, deep-sea hydrothermal vent sites, support an incredible array of archaea, bacteria, and fungi, many of which have now been cultured. Microbes cultured from extreme environments have not disappointed in the natural products arena; diverse bioactive secondary metabolites have been isolated from cultured extreme-tolerant microbes, extremophiles, and deep-sea microbes. The contribution of vent microbes to our arsenal of natural products will likely grow, given the culturability of vent microbes; their metabolic, physiologic, and phylogenetic diversity; numerous reports of bioactive natural products from microbes inhabiting high acid, high temperature, or high pressure environments; and the recent isolation of new chroman derivatives and siderophores from deep-sea hydrothermal vent bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abken H-J, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bact 180:2027–2032

    PubMed  CAS  Google Scholar 

  • Andrianasolo EH, Haramaty L, Rosario-Passapera R, Bidle K, White E, Vetriani C, Falkowski P, Lutz R (2009) Ammonificins A and B, hydroxyethylamine chroman derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. J Nat Prod 72:1216–1219

    Article  PubMed  CAS  Google Scholar 

  • Aragozzini F, Manachini PL, Craveri R, Rindone B, Sclastico C (1972) Structure of thermozymocidin. Experientia 28:881–882

    Article  PubMed  CAS  Google Scholar 

  • Atomi H (2005) Recent progress towards the application of hyperthermophiles and their enzymes. Curr Opin Chem Biol 9:166–173

    Article  PubMed  CAS  Google Scholar 

  • Beifuss U, Tietze M (2005) Methanophenazine and other natural biologically active phenazines. Top Curr Chem 244:77–113

    CAS  Google Scholar 

  • Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Campbell BJ, Jeanthon C, Kostka JE, Luther GW III, Cary SC (2001) Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572

    Article  PubMed  CAS  Google Scholar 

  • Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, Cary SC (2009) Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genet 5:e1000362

    Article  PubMed  Google Scholar 

  • Comita PB, Gagosian RB, Pang H, Costello CE (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem 24:15234–15241

    Google Scholar 

  • Cornec L, Loaec M, Rougeaux H, Guezennec J, Dietrich J (1997) Molecules from hydrothermal micro-organisms of potential to biotechnology: polysaccharides and heat-stable enzymes. Océanis 23:11–25

    CAS  Google Scholar 

  • Cornec L, Robineau J, Rolland JL, Dietrich J, Barbier G (1998) Thermostable esterases screened on hyperthermophilic archaeal and bacterial strains isolated from deep-sea hydrothermal vents: characterization of esterase activity of a hyperthermophilic archaeum Pyrococcus abyssi. J Mar Biotech 6:104–110

    CAS  Google Scholar 

  • Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331

    Article  CAS  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  PubMed  CAS  Google Scholar 

  • Crapart S, Fardeau ML, Cayol JL, Thomas P, Sery C, Ollivier B, Combet-Blanc Y (2007) Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:287–292

    Article  PubMed  CAS  Google Scholar 

  • Craveri R, Manachini PL, Aragozzini F (1972) Thermozymocidin new antifungal antibiotic from a thermophilic eumycete. Experientia 28:867–868

    Article  PubMed  CAS  Google Scholar 

  • Crespo-Medina M, Chatziefthimiou A, Cruz-Matos R, Pérez-Rodríguez I, Barkay T, Lutz R, Starovoytov V, Vetriani C (2009) Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidixing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. Intl J Syst Evol Microbiol 59:1497–1503

    Article  CAS  Google Scholar 

  • Cui CB, Kakeya H, Okada G, Onose R, Osada H (1996) Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot 49:527–533

    PubMed  CAS  Google Scholar 

  • Davidson BS, Schumacher RW (1993) Isolation and synthesis of caprolactins A and B, new caprolactams from a marine bacterium. Tetrahed 49:6569–6574

    Article  CAS  Google Scholar 

  • Du L, Li D, Zhu T, Cai S, Wang F, Xiao X, Gu Q (2009) New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahed 65:1033–1039

    Article  CAS  Google Scholar 

  • Durand P, Reysenbach AL, Prieur D, Pace N (1993) Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159:39–44

    Article  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. PNAS 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Eprintsev AT, Falaveeva MI, Parfyonova NV (2005) Malate dehydrogenase from the thermophilic bacterium Vulcanithermus medioatlanticus. Biochem (Moscow) 70:1027–1030

    Article  CAS  Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores archipelago. Microb Ecol 50:408–417

    Article  PubMed  CAS  Google Scholar 

  • Gantelet H, Ladrat C, Godfroy A, Barbier G, Duchiron F (1998) Characteristics of pullulanases from extremely thermophilic archaea isolated from deep-sea hydrothermal vents. Biotech Lett 20:819–823

    Article  CAS  Google Scholar 

  • Gärtner A, Wiese J, Imhoff JF (2008) Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. Int J Syst Evol Microbiol 58:34–39

    Article  PubMed  Google Scholar 

  • Gautschi JT, Amagata T, Amagata A, Valeriote FA, Mooberry SL, Crews P (2004) Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of Penicillium obtained from deep water sediment. J Nat Prod 67:362–367

    Article  PubMed  CAS  Google Scholar 

  • Gonthier I, Rager M-N, Metzger P, Guezennec J, Largeau C (2001) A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S 557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archaea. Tetrahed 42:2795–2797

    Article  CAS  Google Scholar 

  • Grzymski JJ, Murray AE, Campbell BJ, Kaplarevic M, Gao GR, Lee C, Daniel R, Ghadiri A, Feldman RA, Cary SC (2008) Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. PNAS 105:17516–17521

    Article  PubMed  CAS  Google Scholar 

  • Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotech 29:204–208

    Article  CAS  Google Scholar 

  • Hafenbradl D, Keller M, Stetter KO, Hammann P, Hoyer F, Kogler H (1996) Sibyllimycine, 5, 6, 7, 8-Tetrahydro-3-methyl-8–0x0–4-azaindolizidine, a novel metabolite from Thermoactinomyces sp. Angew Chem Int 35:545–547

    Article  CAS  Google Scholar 

  • Hohmann C, Schneider K, Brunter C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JEM, Goodfellow M, Beil W, Krämer M, Imhoff JF, Süssmuth RD, Fiedler H-P (2009) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104

    Article  PubMed  CAS  Google Scholar 

  • Homann VV, Sandy M, Tincu JA, Templeton AS, Tebo BM, Butler A (2009) Loihichelins A–F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. J Nat Prod 72:884–888

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424

    Article  CAS  Google Scholar 

  • Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59:234–240

    Article  PubMed  CAS  Google Scholar 

  • Kicklighter CE, Fisher CR, Hay ME (2004) Chemical defense of hydrothermal vent and hydrocarbon seep organisms: a preliminary assessment using shallow-water consumers. Mar Ecol Prog Ser 275:11–19

    Article  CAS  Google Scholar 

  • Kohama Y, Teramoto T, Iida K, Muayama N, Semba T, Tatebatake N, Kayamori Y, Tsujikawa K, Mimura T (1991) Isolation of a new antitumor substance from Bacillus stearothermophilus. Chem Pharm Bull 39:2468–2470

    PubMed  CAS  Google Scholar 

  • Kohama Y, Iida K, Tanaka K, Semba T, Itoh M, Teramoto T, Tsujikawa K, Mimura T (1993) Studies on thermophile products. VI. Activation of mouse peritoneal macrophages by bis(2-hydroxyethyl) trisulfide. Biol Pharm Bull 16:973–977

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Minaba M, Ogi N, Kamekura M (2007) Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:437–443

    Article  PubMed  CAS  Google Scholar 

  • Li D, Cai S, Tian L, Lin Z, Zhu T, Fang Y, Liu P, Gu Q, Zhu W (2007a) Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowi YH11-2. Arch Pharm Res 30:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Li D, Wang F, Cai S, Zeng X, Xiao X, Gu Q, Zhu W (2007b) Two new bisorbicillinoids isolated from a deep-sea fungus, Phialocephala sp. FL30r. J Antibiot 60:317–320

    Article  PubMed  CAS  Google Scholar 

  • Li D, Wang F, Xiao X, Zeng X, Gu Q, Zhu W (2007c) A new cytotoxic phenazine derivative from a deep sea bacterium Bacillus sp. Arch Pharm Res 30:552–555

    Article  PubMed  Google Scholar 

  • Li Y, Ye D, Chen X, Lu X, Shao Z, Zhang H, Che Y (2009) Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J Nat Prod 72:912–916

    Article  PubMed  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. PNAS 100:697–702

    Article  PubMed  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotech 7:253–271

    Article  Google Scholar 

  • Mathur EJ, Toledo G, Green BD, Podar M, Richardson TH, Kulwiec M, Chang HW (2005) A biodiversity-based approach to development of performance enzymes. Indus Biotech 1:283–287

    Article  CAS  Google Scholar 

  • Matou S, Colliec-Jouault S, Galy-Fauroux I, Ratiskol J, Sinquin C, Guezennec J, Fischer A-M, Helley D (2005) Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro. Biochem Pharmacol 69:751–759

    Article  PubMed  CAS  Google Scholar 

  • Molinski T, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev 8:69–85

    Article  CAS  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Inagaki F, Takai K, Horikoshi K, Sako Y (2005a) Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:599–605

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005b) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005c) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:925–933

    Article  PubMed  CAS  Google Scholar 

  • Nunoura T, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2008) Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 58:676–681

    Article  PubMed  CAS  Google Scholar 

  • Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Anton van Leeuwen 95:121–133

    Article  Google Scholar 

  • Park HB, Kwon HC, Lee C-H, Yang HO (2009) Glionitrin A, an antibiotic–antitumor metabolite derived from competitive interaction between abandoned mine microbes. J Nat Prod 72:248–252

    Article  PubMed  CAS  Google Scholar 

  • Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  PubMed  CAS  Google Scholar 

  • Pikuta EV, Marsic D, Itoh T, Bej AK, Tang J, Whitman WB, Ng JD, Garriott OK, Hoover RB (2007) Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:1612–1618

    Article  PubMed  CAS  Google Scholar 

  • Raghukumar C, Mohandass C, Cardigos F, D’Costa PM, Santos RS, Colaco A (2008) Assemblage of benthic diatoms and culturable heterotrophs in shallow-water hydrothermal vent of the D. João de Castro Seamount, Azores in the Atlantic Ocean. Curr Sci 95:1715–1723

    CAS  Google Scholar 

  • Raguénès G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, Barbier G, Guezennec J (1996) Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62:67–73

    PubMed  Google Scholar 

  • Raguénès G, Christen R, Guezennec J, Pignet P, Barbier G (1997a) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Intl J Syst Bacteriol 47:989–995

    Article  Google Scholar 

  • Raguénès GHC, Peres A, Ruimy R, Pignet P, Christen R, Loaec M, Rougeaux H, Barbier G, Guezennec JG (1997b) Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J Appl Microbiol 82:422–430

    Article  PubMed  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Humphrey E, Beatty JT, Yurkov V (2006) Metalloid reducing bacteria isolated from deep ocean hydrothermal vents of the Juan de Fuca Ridge, Pseudoalteromonas telluritireducens sp. nov. and Pseudoalteromonas spiralis sp. nov. Curr Microbiol 53:449–456

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach AL, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447

    Article  PubMed  CAS  Google Scholar 

  • Schumacher RW, Davidson BS, Montenegro DA, Bernan VS (1995) γ-Indomycinone, a new pluramycin metabolite from a deep-sea derived actinomycete. J Nat Prod 58:613–617

    Article  PubMed  CAS  Google Scholar 

  • Simon-Colin C, Raguénès G, Cozien J, Guezennec JG (2008) Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol 104:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Sharma M, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Anti-Canc Agents in Med Chem 8:603–617

    CAS  Google Scholar 

  • Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25:1131–1166

    Article  PubMed  CAS  Google Scholar 

  • Slobodkina GB, Kolganova TV, Tourova TP, Kostrikina NA, Jeanthon C, Bonch-Osmolovskaya EA, Slobodkin AI (2008) Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 58:852–855

    Article  PubMed  CAS  Google Scholar 

  • Smith JL, Campbell BJ, Hanson TE, Zhang CL, Cary SC (2008) Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 58:1598–1602

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Goldstein E, Parker K, Bugni T, Baarson C, Gress J, Blake D (2003) A novel 5-HT receptor ligand and related cytotoxic compounds from an acid mine waste extremophiles. J Nat Prod 66:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Stierle DB, Stierle AA, Hobbs JD, Stokken J, Clardy J (2004) Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Org Lett 6:1049–1052

    Article  PubMed  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71:5357–5360

    Article  PubMed  CAS  Google Scholar 

  • Stierle DB, Stierle AA, Patacini B (2007) The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. J Nat Prod 70:1820–1823

    Article  PubMed  CAS  Google Scholar 

  • Van Dover CL, Lichtwardt RW (1986) A new trichomycete commensal with a galatheid squat lobster from deep-sea hydrothermal vents. Biol Bull 171:461–468

    Article  Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    Article  PubMed  Google Scholar 

  • Van Dover CL, Ward ME, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen M, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar Ecol 28:54–62

    Article  Google Scholar 

  • Voordeckers JW, Do MY, Hügler M, Ko V, Sievert SM, Vetriani C (2008) Cultural dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Extremophiles 12:627–640

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand JD, Deng Y, He Z, Wu L, Zhou J, Xiao X (2009) GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. PNAS 106:4840–4845

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26:44–71

    Article  PubMed  CAS  Google Scholar 

  • Zanchetta P, Lagarde N, Guezennec J (2003) A new bone-healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif Tiss Int 72:74–79

    Article  CAS  Google Scholar 

  • Zappa S, Rolland J-L, Flament D, Gueguen Y, Boudrant J, Dietrich J (2001) Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi. Appl Environ Microb 67:4504–4511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by grants R01 CA90441-01-05, 2R56 CA090441-06A1, and 5R01 CA090441-07 from the Division of Cancer Treatment, Diagnosis and Centers, National Cancer Institute, DHHS, and the Arizona Biomedical Research Commission. Thanks are also due to F. Hogan for preparing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin K. Pettit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettit, R.K. Culturability and Secondary Metabolite Diversity of Extreme Microbes: Expanding Contribution of Deep Sea and Deep-Sea Vent Microbes to Natural Product Discovery. Mar Biotechnol 13, 1–11 (2011). https://doi.org/10.1007/s10126-010-9294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9294-y

Keywords

Navigation