Skip to main content
Log in

Nature: a vital source of leads for anticancer drug development

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Over 60% of the current anticancer drugs have their origin in one way or another from natural sources. Nature continues to be the most prolific source of biologically active and diverse chemotypes, and it is becoming increasingly evident that associated microbes may often be the source of biologically active compounds originally isolated from host macro-organisms. While relatively few of the actual isolated compounds advance to become clinically effective drugs in their own right, these unique molecules may serve as models for the preparation of more efficacious analogs using chemical methodology such as total or combinatorial (parallel) synthesis, or manipulation of biosynthetic pathways. In addition, conjugation of toxic natural molecules to monoclonal antibodies or polymeric carriers specifically targeted to epitopes on tumors of interest can lead to the development of efficacious targeted therapies. The essential role played by natural products in the discovery and development of effective anticancer agents, and the importance of multidisciplinary collaboration in the generation and optimization of novel molecular leads from natural product sources is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    PubMed  CAS  Google Scholar 

  • Agoulnik S, Kuznetsov G, Tendyke K et al (2005) Sensitivity to halichondrin analog E7389 and hemiasterlin analog E7974 correlates with beta III tubulin isotype expression in human breast cancer cell lines. In: 41st Annual Meeting of American Society of Clinical Oncology (ASCO), Abstract 2012

  • Alhamadsheh MM, Hudson RA, Tillekeratne LMV (2006) Design, total synthesis, and evaluation of novel open-chain epothilone analogues. Org Lett 8:685–688

    PubMed  CAS  Google Scholar 

  • Altmann K-H (2005) Recent developments in the chemical biology of epothilones. Curr Pharm Des 11:1595–1613

    PubMed  CAS  Google Scholar 

  • Amna T, Puri SC, Verma V et al (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189–196

    PubMed  CAS  Google Scholar 

  • Andersen RJ, Roberge M (2005) HTI-286, a synthetic analog of the antimitotic natural product hemiasterlin. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 267–280

    Google Scholar 

  • Arcamone F (2005) Anthracyclines. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 299–320

    Google Scholar 

  • Bai R, Pettit GR, Hamel E (1990) Dolastatin 10, a powerful cytostatic peptide derived from a marine animal: inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 39:1941–1949

    PubMed  CAS  Google Scholar 

  • Banskota AH, McAlpine JB, Sørensen D et al (2006) Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J Antibiot 59:533–542

    PubMed  CAS  Google Scholar 

  • Bode HB, Muller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed 44:6828–6846

    CAS  Google Scholar 

  • Bok JW, Hoffmeister D, Maggio-Hall LA et al (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    PubMed  CAS  Google Scholar 

  • Borman S (2003) The many faces of combinatorial chemistry. Chem Eng News 81(43):45–56

    Google Scholar 

  • Borman S (2004) Rescuing combichem. Chem Eng News 82(40):32–40

    Google Scholar 

  • Byrd JC, Peterson BL, Gabrilove J, Odenike et al (2005) Treatment of relapsed chronic lymphocytic leukemia by 72-hour continuous infusion or 1-hour bolus infusion of flavopiridol: results from cancer and leukemia group B study 19805. Clin Cancer Res 11:4176

    PubMed  CAS  Google Scholar 

  • Cachoux F, Isarno T, Wartmann M et al (2005) Scaffolds for microtubule inhibition through extensive modification of the epothilone template. Angew Chem Int Ed 44:7469–7473

    CAS  Google Scholar 

  • Cassady JM, Chan KK, Floss HG et al (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull (Tokyo) 52:1–26

    CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D et al (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    PubMed  CAS  Google Scholar 

  • Chang YT, Gray NS, Rosania GR et al (1999) Synthesis and application of functionally diverse 2, 6, 9-trisubstituted purine libraries as CDK inhibitors. Chem Biol 6:361–375

    PubMed  CAS  Google Scholar 

  • Clardy J, Walsh CT (2004) Lessons from natural molecules. Nature 432:829–837

    PubMed  CAS  Google Scholar 

  • Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nature Biotechnol 24:1541–1550

    CAS  Google Scholar 

  • Class S (2002) Pharma overview. Chem Eng News 80(48):39–49

    Google Scholar 

  • Cortes JE, Pazdur R (1995) Docetaxel. J Clin Oncol 13:2643–2655

    PubMed  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67:232–244

    PubMed  CAS  Google Scholar 

  • Cunningham C, Appleman LJ, Kirvan-Visovatti M et al (2005) Phase I and pharmacokinetic study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously on days 1, 3, and 5 every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 11:7825–7833

    PubMed  CAS  Google Scholar 

  • de Jonge M, Verweiji J (2005) The epothilone dilemma. J Clin Oncol 23:9048–9050

    PubMed  Google Scholar 

  • Denmeade SR, Jakobsen CM, Janssen S et al (2003) Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Nat Cancer Inst 95:990–1000

    Article  PubMed  CAS  Google Scholar 

  • Duncan R (1997) Drug targeting: where are we now and where are we going? J Drug Target 5:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ebbinghaus S, Rubin E, Hersh E et al (2005) A phase I study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously daily for 5 consecutive days every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 11:7807–7816

    PubMed  CAS  Google Scholar 

  • Engert A, Sausville EA, Vitetta E (1998) The emerging role of ricin A-chain immunotoxins in leukemia and lymphoma. Curr Top Microbiol Immunol 234:13–33

    PubMed  CAS  Google Scholar 

  • Evert S (2008) Peptide-producing powerhouses. Chem Eng News 86(43):48–50

    Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    PubMed  CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA et al (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU 2110) endophytic on monstera sp. Microbiology 150:785–793

    PubMed  CAS  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed 42:355–357

    CAS  Google Scholar 

  • Fieseler L, Hentschel U, Grozdanov L et al (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. J Appl Environ Microbiol 73:2144–2155

    CAS  Google Scholar 

  • Flahive E, Srirangam J (2005) The dolastatins: novel antitumor agents from Dolabella auricularia. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 191–214

    Google Scholar 

  • Gomes J, Steiner W (2004) Extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282

    PubMed  CAS  Google Scholar 

  • Gueritte F, Fahy J (2005) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 123–136

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    PubMed  CAS  Google Scholar 

  • Hale KJ, Hummersone MG, Manaviazar S et al (2002) The chemistry and biology of the bryostatin antitumour macrolides. Nat Prod Rep 19:413–453

    PubMed  CAS  Google Scholar 

  • Hecht SM (2005) Bleomycin group antitumor agents. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 357–382

    Google Scholar 

  • Henríquez R, Faircloth G, Cuevas C (2005) Ecteinascidin 743 (ET-743, Yondelis), aplidin, and kahalalide F. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 215–240

    Google Scholar 

  • Herbst RS, Hammond LA, Carbone DP et al (2003) A phase I/IIA trial of continuous five-day infusion of squalamine lactate (MSI-1256F) plus carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin Cancer Res 9:4108–4115

    PubMed  CAS  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    PubMed  CAS  Google Scholar 

  • Höfle G, Reichenbach H (2005) Epothilone, a myxobacterial metabolite with promising antitumor activity. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 413–450

    Google Scholar 

  • Hoyoux A, Blaise V, Collins T et al (2004) Extreme catalysts from low-temperature environments. Biosci Bioeng 98:317–330

    CAS  Google Scholar 

  • Itokawa H, Wang X, Lee K-H (2005) Homoharringtonine and related compounds. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 47–70

    Google Scholar 

  • Janssen S, Rosen DM, Ricklis RM et al (2006) Pharmacokinetics, biodistribution and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug. Prostate 66:358–368

    PubMed  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    PubMed  CAS  Google Scholar 

  • Khosla C (2000) Natural product biosynthesis: a new interface between enzymology and medicine. J Org Chem 65:8127–8133

    PubMed  CAS  Google Scholar 

  • Kingston DGI (2005) Taxol and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 89–122

    Google Scholar 

  • Kwon HC, Kauffman CA, Jensen PR et al (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “marinispora”. J Am Chem Soc 128:1622–1632

    PubMed  CAS  Google Scholar 

  • Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    PubMed  CAS  Google Scholar 

  • Lee K-H, Xiao Z (2005) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 71–88

    Google Scholar 

  • Li Q, Sham HL (2002) Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer expert. Opin Ther Pat 12:1663–1701

    CAS  Google Scholar 

  • McAlpine JB, Bachmann BO, Piraee M et al (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent as an example. J Nat Prod 68:493–496

    PubMed  CAS  Google Scholar 

  • Meijer L, Raymond E (2003) Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc Chem Res 36:417–425

    PubMed  CAS  Google Scholar 

  • Melnikova I (2005) Wet age-related macular degeneration. Nat Rev Drug Discov 4:711–712

    PubMed  CAS  Google Scholar 

  • Moore KS, Wehrli S, Roder H et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358

    PubMed  CAS  Google Scholar 

  • Mutter R, Wills M (2000) Chemistry and clinical biology of the bryostatins. Bioorg Med Chem 8:1841–1860

    PubMed  CAS  Google Scholar 

  • Newman DJ (2005) The bryostatins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 137–150

    Google Scholar 

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2005) The discovery of anticancer drugs from natural sources. In: Zhang L, Fleming GA, Demain AL (eds) Natural products: drug discovery. Therapeutics, and preventative medicine. Dekker, New York, pp 129–168

    Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:1022–1037

    Google Scholar 

  • Nicolaou KC, Vourloumis D, Winssinger N et al (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 39:44–122

    CAS  Google Scholar 

  • Norcross RD, Patterson I (1995) Total synthesis of bioactive marine macrolides. Chem Rev 95:2041–2114

    CAS  Google Scholar 

  • Oh DC, Strangman WK, Kauffman CA et al (2007) Thalassospiramides A and B, immunosuppressive peptides from the marine bacterium Thalassospira sp. Org Lett 9:1525–1528

    PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    PubMed  CAS  Google Scholar 

  • Pennati M, Capmpbell AJ, Curto M et al (2005) Potentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-regulation. Mol Cancer Ther 4:1328–1337

    PubMed  CAS  Google Scholar 

  • Persidis A (1998) Extremophiles. Nature Biotechnol 16:593–594

    CAS  Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538

    PubMed  CAS  Google Scholar 

  • Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50

    PubMed  CAS  Google Scholar 

  • Piel J, Hofer I, Hui D (2004a) Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bacteriol 186:1280–1286

    PubMed  CAS  Google Scholar 

  • Piel J, Hui D, Wen G et al (2004b) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad SciUSA 101:16222–16227

    CAS  Google Scholar 

  • Piel J, Butzke D, Fusetani N et al (2005) Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 68:472–479

    PubMed  CAS  Google Scholar 

  • Pinney KG, Jelinek C, Edvardsen K (2005) The discovery and development of the combretastatins. In: Cragg GM, Kingston DGI, Newman DJ et al (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 23–46

    Google Scholar 

  • Puri SC, Verma V, Amna T et al (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    PubMed  CAS  Google Scholar 

  • Rachid S, Gerth K, Kochems I et al (2007) Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol Microbiol 63:1783–1796

    PubMed  CAS  Google Scholar 

  • Rademaker-Lakhai JM, Horenblas S, Meinhardt W et al (2005) Phase I clinical and pharmokinetic study of kahalalide F in patients with advanced androgen refractory prostate cancer. Clin Cancer Res 11:1854–1862

    PubMed  CAS  Google Scholar 

  • Rahier NJ, Thomas CJ, Hecht SM (2005) Camptothecin and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 5–22

    Google Scholar 

  • Rasila KK, Verschraegen C (2005) Tasidotin HCI. Curr Opin Investig Drugs 6:631–638

    PubMed  CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    PubMed  CAS  Google Scholar 

  • Rose V, Schiller J, Wood A et al (2004) Randomized phase II trial of weekly squalamine, carboplatin, and paclitaxel as first line therapy for advanced non-small cell lung cancer. J Clin Oncol 22: 7109 (Meeting Abstracts)

    Google Scholar 

  • Rossi M, Ciaramella M, Cannio R et al (2003) Extremophiles 2002. J Bacteriol 185:3683–3689

    PubMed  CAS  Google Scholar 

  • Salazar R, Casado E, Lopez Martin JA et al (2005) Clinical and pharmacokinetic phase I dose-finding study of kahalalide F (KF) administered as a prolonged infusion in patients with solid tumors. J Clin Oncol 23(16S): Abstract 2059

  • Sausville EA, Zaharevitz D, Gussio R et al (1999) Cyclin-dependent kinases: initial approaches to exploit a novel therapeutic target. Pharmacol Ther 82:285–292

    PubMed  CAS  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    PubMed  CAS  Google Scholar 

  • Shimoyama T, Hamano T, Natsume T et al (2006) Reference profiling of the genomic response induced by an antimicrotubule agent, TZT-1027 (soblidotin), in vitro. Pharmacogenom J 6:388–396

    CAS  Google Scholar 

  • Short PL (2007) New Zealand plays to its strengths. Chem Eng News 85(4):20–21

    Google Scholar 

  • Sills AK Jr, Williams JI, Tyler BM et al (1998) Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res 58:2784–2792

    PubMed  CAS  Google Scholar 

  • Sohoel H, Jensen AM, Moller JV et al (2006) Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg Med Chem 14:2810–2815

    PubMed  CAS  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    PubMed  CAS  Google Scholar 

  • Stierle AE, Stierle DB, Patacinni B (2008) The berkeleyamides, amides from the acid lake fungus Penicillium rubrum. J Nat Prod 71(5):856–860

    PubMed  CAS  Google Scholar 

  • Strobel GA, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    PubMed  CAS  Google Scholar 

  • Sudek S, Lopanik NB, Waggoner LE et al (2007) Identification of the putative polyketide gene cluster from the uncultivated microbial symbiont, Candidatus Endobugula sertula, of the marine bryozoan, Bugula neritina. J Nat Prod 70:67–74

    PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CAS  Google Scholar 

  • Tang L, Chung L, Carney JR et al (2005) Generation of new epothilones by genetic engineering of a polyketide synthase in Myxococcus xanthus. J Antibiot 58:178–184

    PubMed  CAS  Google Scholar 

  • Thomas MG, Bixby KA, Shen B (2005) Combinatorial biosynthesis of anticancer natural products. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 519–552

  • Udwary DW, Zeigler L, Asolkar RN et al (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    PubMed  CAS  Google Scholar 

  • Van de Weghe P, Eustache J (2005) The application of olefin metathesis to the synthesis of biologically active macrocyclic agents. Curr Top Med Chem 5:1495–1519

    PubMed  Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    PubMed  CAS  Google Scholar 

  • Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810

    PubMed  CAS  Google Scholar 

  • Walsh CT (2007) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10

    PubMed  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    PubMed  CAS  Google Scholar 

  • Wender PA, Lippa B (2000) Synthesis and biological evaluation of bryostatin analogues: the role of the A-ring. Tetrahedron Lett 41:1007–1011

    CAS  Google Scholar 

  • Wender PA, De Brabander J, Harran PG et al (1998a) Synthesis of the first members of a new class of biologically active bryostatin analogues. J Am Chem Soc 120:4534–4535

    CAS  Google Scholar 

  • Wender PA, De Brabander J, Harran PG et al (1998b) The design, computer modeling, solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc Natl Acad Sci USA 95:6624–6629

    PubMed  CAS  Google Scholar 

  • Wender PA, Hinkle KW, Koehler MFT et al (1999) The rational design of potential chemotherapeutic agents: synthesis of bryostatin analogues. Med Res Rev 19:388–407

    PubMed  CAS  Google Scholar 

  • Wender PA, Baryza JL, Bennett CE et al (2002) The practical synthesis of a novel and highly potent analogue of bryostatin. J Am Chem Soc 124:13648–13649

    PubMed  CAS  Google Scholar 

  • Wender PA, Mayweg AVW, VanDeusen CL (2003a) A concise, selective synthesis of the polyketide spacer domain of a potent bryostatin analogue. Org Lett 5:277–279

    PubMed  CAS  Google Scholar 

  • Wender PA, Koehler MFT, Sendzik M (2003b) A new synthetic approach to the C ring of known as well as novel bryostatin analogues. Org Lett 5:4549–4552

    PubMed  CAS  Google Scholar 

  • Wiegel J, Kevbrin VV (2004) Alkalithermophiles. Biochem Soc Trans 32:193–198

    PubMed  CAS  Google Scholar 

  • Wilkinson B, Moss SJ (2005) Biosynthetic engineering of natural products for lead optimization and development. Curr Opin Drug Dis Dev 8:748–750

    CAS  Google Scholar 

  • Williams PG, Asolkar RN, Kondratyuk T et al (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88

    PubMed  CAS  Google Scholar 

  • Yang X, Zhang L, Guo B et al (2004) Preliminary study of a vincristine-producing endophytic fungus isolated from leaves of Catharanthus roseus. Zhong Cao Yao (Chinese Tradit. Herb. Drugs) 35:79–81

    Google Scholar 

  • Yooseph S, Sutton G, Rusch DB et al (2007) The sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16 doi:10.1371/journal.pbio.0050016. (Published 13 March 2007)

  • Yu T-W, Floss HG (2005) Ansamitocins (Maytansanoids). In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 321–338

    Google Scholar 

  • Yu MJ, Kishi Y, Littlefield BA (2005) Discovery of E7389, a fully synthetic macrocyclic ketone analog of halichondrin B. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 241–266

    Google Scholar 

  • Zhou G-X, Wijeratne EMK, Bigelow D et al (2004) Aspochalasins I, J, and K. J Nat Prod 67:328–332

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Cragg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cragg, G.M., Newman, D.J. Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8, 313–331 (2009). https://doi.org/10.1007/s11101-009-9123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9123-y

Keywords

Navigation