Skip to main content
Log in

Microbial diversity associated with ascidians: a review of research methods and application

  • Review Article
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This paper reviews research in microbial diversity associated with ascidians (commonly known as sea squirts). The application of culture-dependent and culture-independent techniques is introduced in detail and these methods are analyzed for their advantages and limitations. Because of the limitations of available media and cultivation conditions, culture-dependent methods can only reveal a limited portion of the microorganisms in ascidians. However, the acquisition of typical microbial community members in culture remains a valuable resource for exploring their bioactive potential and relationships with the ascidian hosts. The application of metagenomic library methods has greatly accelerated ascidian metabolites studies. The next-generation sequencing techniques have led to the acquisition of an unprecedented quantity of ascidian microorganism data, providing the most comprehensive information about ascidian microbial diversity. Ascidians provide unique ecological niches that harbor an unexpected diversity of microorganisms different from planktonic bacteria in the local seawater. Microbial communities associated with ascidians tend to be species-specific and tissue-specific. Different tissue of the same ascidian may be associated with different microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behrendt L, Larkum AW, Trampe E, Norman A, Sørensen SJ, Kühl M (2012) Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J. 6:1222–1237

    Article  CAS  PubMed  Google Scholar 

  • Bernatzky R, 1989. Restriction fragment length polymorphism, plant molecular biology manual. Springer, pp 467–484.

  • Blasiak LC, Zinder SH, Buckley DH, Hill RT (2014) Bacterial diversity associated with the tunic of the model chordate Ciona intestinali. ISME J. 8:309–320

    Article  CAS  PubMed  Google Scholar 

  • Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J 7:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva Oliveira FA, Colares GB, Hissa DC, Angelim AL, Melo VM, Lotufo TM (2013) Microbial epibionts of the colonial ascidians Didemnum galacteum and Cystodytes sp. Symbiosis 59:57–63

    Article  Google Scholar 

  • Davidson BS (1993) Ascidians: producers of amino acid-derived metabolites. Chem Rev 3:1771–1791

    Article  Google Scholar 

  • Dishaw LJ et al. (2014) The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 9:e93386

    Article  PubMed  PubMed Central  Google Scholar 

  • Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225

    Article  CAS  PubMed  Google Scholar 

  • Erwin PM, Pineda MC, Webster N, Turon X, López-Legentil S (2013) Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata. Symbiosis 59:35–46

    Article  Google Scholar 

  • Erwin PM, Pineda MC, Webster N, Turon X, Lopez-Legentil S (2014) Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME J. 8:575–588

    Article  CAS  PubMed  Google Scholar 

  • Groepler W, Schuett C (2003) Bacterial community in the tunic matrix of a colonial ascidian Diplosoma migrans. Helgoland Mar Res 57:139–143

    Article  Google Scholar 

  • Hirose E (2015) Ascidian photosymbiosis: diversity of cyanobacterial transmission during embryogenesis. Genesis 53:121–131

    Article  PubMed  Google Scholar 

  • Hirose E, Maruyama T (2004) What are the benefits in the ascidian-Prochloron symbiosis. Endocyt Cell Res 15:51–62

    Google Scholar 

  • Hirose E, Aoki M, Chiba K (1996) Fine structures of tunic cells and distribution of bacteria in the tunic of the luminescent ascidian Clavelina miniata (Ascidiacea, Urochordata). Zool Sci 13:519–523

    Article  Google Scholar 

  • Jimenez PC et al. (2013) Cytotoxicity of actinomycetes associated with the ascidian Eudistoma vannamei (Millar, 1977), endemic of northeastern coast of Brazil. Lat Am J Aquat Res 41:335–343

    Google Scholar 

  • Kwan JC, Schmidt EW (2013) Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism. PLoS One 8:e80822

    Article  PubMed  PubMed Central  Google Scholar 

  • Lametschwandtner A, Lametschwandtner U, Weiger T (1990) Scanning electron microscopy of vascular corrosion casts–technique and applications: updated review. Scanning Microsc 4:889–940

    CAS  PubMed  Google Scholar 

  • Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBio Chem 6:1760–1765

    Article  CAS  Google Scholar 

  • López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X (2011) Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One 6:e23938

  • Martínez-García M, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Antón J (2007) Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ Microbiol 9:521–534

    Article  PubMed  Google Scholar 

  • Martínez-García M, Stief P, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Dubilier N, Antón J (2008) Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ Microbiol 10:2991–3001

    Article  PubMed  Google Scholar 

  • Martínez-García M, Díaz-Valdés M, Antón J (2010) Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians. FEMS Microbiol Ecol 71:387–398

    Article  PubMed  Google Scholar 

  • Menezes CB et al. (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state. Brazil Microbiol Res 165:466–482

    Article  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meziti A, Kormas KA, Pancucci-Papadopoulou M-A, Thessalou-Legaki M (2007) Bacterial phylotypes associated with the digestive tract of the sea urchin Paracentrotus lividus and the ascidian. Microcosmus sp. Russ J Mar Biol 33:84–91

    Article  Google Scholar 

  • Montenegro TG, Rodrigues FA, Jimenez PC, Angelim AL, Melo VM, Rodrigues Filho E, MdCF d O, Costa-Lotufo LV (2012) Cytotoxic activity of fungal strains isolated from the ascidian Eudistoma vannamei. Chem Biodivers 9:2203–2209

    Article  CAS  PubMed  Google Scholar 

  • Moss C, Green D, Pérez B, Velasco A, Henriquez R, McKenzie J (2003) Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridisation analysis. Mar Biol 143:99–110

    Article  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Giddings L-A (2014) Natural products as leads to antitumor drugs. Phytochem Rev 13:123–137

    Article  CAS  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  • Okuyama M, Saito Y, Ogawa M, Takeuchi A, Jing Z, Naganuma T, Hirose E (2002) Morphological studies on the bathyal ascidian, Megalodicopia hians Oka 1918 (Octacnemidae, Phlebobranchia), with remarks on feeding and tunic morphology. Zool Sci 19:1181–1189

    Article  PubMed  Google Scholar 

  • Pérez-Matos AE, Rosado W, Govind NS (2007) Bacterial diversity associated with the Caribbean tunicate Ecteinascidia turbinata. Anton Leeuw 92:155–164

    Article  Google Scholar 

  • Price C (1993) Fluorescence in situ hybridization. Blood Rev 7:127–134

    Article  CAS  PubMed  Google Scholar 

  • Rath CM et al. (2011) Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 6:1244–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesenfeld CS, Murray AE, Baker BJ (2008) Characterization of the microbial community and polyketide biosynthetic potential in the palmerolide-producing tunicate Synoicum adareanum. J Nat Prod 71:1812–1818

    Article  CAS  PubMed  Google Scholar 

  • Romanenko L, Kalinovskaya N, Mikhailov V (2001) Taxonomic composition and biological activity of microorganisms associated with a marine ascidian Halocynthia aurantium. Russ J Mar Biol 27:291–296

    Article  Google Scholar 

  • Schmidt EW (2015) The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria. Invertebr Biol 134:88–102

    Article  PubMed  Google Scholar 

  • Schmidt EW, Donia MS (2010) Life in cellulose houses: symbiotic bacterial biosynthesis of ascidian drugs and drug leads. Curr Opin Biotech 21:827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci U S A 102:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuett C, Doepke H, Groepler W, Wichels A (2005) Diversity of intratunical bacteria in the tunic matrix of the colonial ascidian Diplosoma migrans. Helgol Mar Res 59:136–140

    Article  Google Scholar 

  • Steinert G, Taylor M, Schupp P (2015) Diversity of actinobacteria associated with the marine ascidian Eudistoma toealensis. Mar Biotechnol 17:377–385

    Article  CAS  PubMed  Google Scholar 

  • Tait E, Carman M, Sievert SM (2007) Phylogenetic diversity of bacteria associated with ascidians in eel pond (woods hole, Massachusetts, USA). J Exp Mar Biol Ecol 342:138–146

    Article  Google Scholar 

  • Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ (2004) Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl Environ Microb 70:4411–4414

    Article  CAS  Google Scholar 

  • Tianero MDB, Kwan JC, Wyche TP, Presson AP, Koch M, Barrows LR, Bugni TS, Schmidt EW (2015) Species specificity of symbiosis and secondary metabolism in ascidians. ISME J. 9:615–628

    Article  PubMed  Google Scholar 

  • Webb DJ, Brown CM, 2013. Epi-fluorescence microscopy, cell imaging techniques. Springer, pp 29–59

  • Williams DB, Carter CB, 1996. The transmission electron microscope. Springer, pp. 3–17

  • Wilson T (1990) Confocal microscopy. Academic Press, London, pp. 1–64

    Google Scholar 

  • Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647

    Article  CAS  PubMed  Google Scholar 

  • Xin Z-H, Zhu T-j, Wang W-L, Du L, Fang Y-c, Gu ,Q-Q, Zhu W-M (2007) Isocoumarin derivatives from the sea squirt-derived fungus Penicillium stoloniferum QY2-10 and the halotolerant fungus Penicillium notatum B-52. Arch Pharm Res 30:816–819

    Article  CAS  PubMed  Google Scholar 

  • Yarden O (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:228–228

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31300009), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. HIT. NSRIF. 2014127) and Discipline Construction Guide Foundation in Harbin Institute of Technology at Weihai (No. WH20150204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Wang.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fu, C. & Wang, G. Microbial diversity associated with ascidians: a review of research methods and application. Symbiosis 71, 19–26 (2017). https://doi.org/10.1007/s13199-016-0398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0398-7

Keywords

Navigation