Skip to main content
Log in

A Novel Ternary Composite of Polyurethane/Polyaniline/Nanosilica with Antistatic Property and Excellent Mechanical Strength: Preparation and Mechanism

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Antistatic and strength properties are of vital importance for polyurethane rubber used in moving parts of many industrial instruments. Herein, polyurethane was composited with polyaniline and nanosilica based on in situ synthesis of polymer and physical mixing of these fillers to reach desired antistatic and mechanical properties. Chemical, morphological and thermal properties of the polyurethane/polyaniline/nanosilica composites were studied. The electrical resistivity of the composite decreased from 1.1×106 MΩ to 7.6×104 MΩ as a result of the addition of 4% polyaniline. The tensile strength and elongation at break of the polyurethane composites improved by nearly 300% and 100%, respectively, when compared with those of the neat polyurethane. The electronic resistance of PU/PANI/NS ternary is low enough for its antistatic property and decreases with the increase of the added nanosilica, which is unexpectedly and rather significant. Our results would shed light on the development of antistatic PU with excellent mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ji, X.; Chen, D.; Shen, J.; Guo, S. Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. 2019, 370, 1341–1349.

    Article  CAS  Google Scholar 

  2. Sasaki, S.; Tsujiei, Y.; Kawai, M.; Mitsumata, T. Electric conductivity and dielectric-breakdown behavior for polyurethane magnetic elastomers. J. Phys. Chem. B 2017, 121, 1740–1747.

    Article  CAS  PubMed  Google Scholar 

  3. China National Textile and Apparel Council (CNTAC). in The development report of China textile industry in 2020–2021. China Textiles Press, Beijing, 2021.

    Google Scholar 

  4. Nozaki, S.; Hirai, T.; Higaki, Y.; Yoshinaga, K.; Kojio, K.; Takahara, A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 2017, 116, 423–428.

    Article  CAS  Google Scholar 

  5. Park, K. W.; Dong, H. K.; Kim, H. J. Preparation and characterization of polyamide4 (PA4)-polyurethane (PU)-PA4 triblock copolymers. Polymer 2014, 38, 9–15.

    CAS  Google Scholar 

  6. Chen, C.; Zhao, X.; Shi, C.; Chen, J. Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J. Mater. Sci. 2018, 53, 6053–6064.

    Article  CAS  Google Scholar 

  7. Wu, K. H.; Feng, L. F.; Gu, X. P.; Zhang, C. L.; Shen, S. Thermally reversible cross-linkers to facilitate the improved reprocessability of poly(butyl methanol methacrylate) rubber with excellent thermal and mechanical properties. Ind. Eng. Chem. Res. 2018, 57, 946–953.

    Article  CAS  Google Scholar 

  8. Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957.

    Article  CAS  PubMed  Google Scholar 

  9. Ambilkar, S. C.; Bansod, N. D.; Kapgate, B. P.; Das, A.; Formanek, P.; Rajkumar, K.; Das, C. In situ zirconia: a superior reinforcing filler for high-performance nitrile rubber composites. ACS Omega 2020, 5, 7751–7761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, S. M.; Han, S. S.; Shin, E. J. Highly stretchable conductive nanocomposite films using regenerated cellulose nanoparticles. ACS Appl. Polym. Mater. 2020, 2, 4387–4398.

    Article  CAS  Google Scholar 

  11. Feng, L. B.; Wang, Y. P.; Qiang, X. H.; Wang, S. H. Effect of silica nanoparticles on properties of waterborne polyurethanes. Chinese J. Polym. Sci. 2012, 30, 845–852.

    Article  CAS  Google Scholar 

  12. Yan, K.; Liu, C.; Ma, J. Dendritic fibrous nanosilica loaded chitosan for improving water vapor permeability and antibacterial properties of waterborne polyurethane acrylate membranes. J. Clean. Prod. 2021, 291, 125922.

    Article  CAS  Google Scholar 

  13. Xie, W.; Pakdel, E.; Liu, D.; Sun, L.; Wang, X. Waste-hair-derived natural melanin/TiO2 hybrids as highly efficient and stable UV-shielding fillers for polyurethane films. ACS Sustain. Chem. Eng. 2020, 8, 1343–1352.

    Article  CAS  Google Scholar 

  14. Zhang, H.; She, Y.; Zheng, X.; Cheng, H. Y.; Pu, J. W. Optical and mechanical properties of polyurethane/surface-modified nanocrystalline cellulose composites. Chinese J. Polym. Sci. 2014, 32, 1363–1372.

    Article  CAS  Google Scholar 

  15. Ali, A.; Xiao, Y.; Song, L.; Hua, J.; Rao, Q.; Shoaib, M.; Ul Amin, B.; Zhan, X.; Zhang, Q. Biodegradable polyurethane based clay composite and their anti-biofouling properties. Colloid. Surf. A: Physicochem. Eng. Aspects 2021, 625, 126946.

    Article  CAS  Google Scholar 

  16. Adak, B.; Butola, B. S.; Joshi, M. Effect of organoclay-type and claypolyurethane interaction chemistry for tuning the morphology, gas barrier and mechanical properties of clay/polyurethane nanocomposites. Appl. Clay Sci. 2018, 161, 343–353.

    Article  CAS  Google Scholar 

  17. Qu, M.; Wang, H.; Chen, Q.; Wu, L.; Tang, P.; Fan, M.; Guo, Y.; Fan, H.; Bin, Y. A thermally-electrically double-responsive polycaprolactone-thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance. Chem. Eng. J. 2022, 427, 131648.

    Article  CAS  Google Scholar 

  18. Ardimas; Putson C. Muensit N. High electromechanical performance of modified electrostrictive polyurethane three-phase composites. Compos. Sci. Technol. 2018, 158, 164–174.

    Article  CAS  Google Scholar 

  19. Cao, B. H.; Chen, W.; Wei, W. Y.; Chen, Y. L.; Yuan, Y. Carbon dots intensified mechanochemiluminescence from waterborne polyurethanes as tunable force sensing materials. Chinese J. Polym. Sci. 2021, 39, 1403–1411.

    Article  CAS  Google Scholar 

  20. Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 2018, 118, 6766–6843.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, F.; Feng, L.; Huang, Y.; Shen, W.; Ma, H. Effect of the gradient distribution of multiwalled carbon nanotubes on the bond strength and corrosion resistance of waterborne polyurethane conductive nanocomposites. Prog. Org. Coat. 2020, 140, 105507.

    Article  CAS  Google Scholar 

  22. Liu, L.; Yu, P.; Wu, M.; Wu, Q.; Liu, J.; Yang, J.; Zhang, J. Poly(tannin urethane)-stabilized multiwalled carbon nanotube aqueous dispersion for antistatic coating. Ind. Eng. Chem. Res. 2021, 60, 12353–12361.

    Article  CAS  Google Scholar 

  23. Vieira, L. S.; dos Anjos, E. G. R.; Verginio, G. E. A.; Oyama, I. C.; Braga, N. F.; da Silva, T. F.; Montagna, L. S.; Rezende, M. C.; Passador, F. R. Carbon-based materials as antistatic agents for the production of antistatic packaging: a review. J. Mater. Sci.: Mater. Electron. 2021, 32, 3929–3947.

    Google Scholar 

  24. Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace. Def. Technol. 2020, 16, 107–118.

    Article  Google Scholar 

  25. Al-Attabi, N. Y.; Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Evans, M. Preparation and characterization of highly conductive polyurethane composites containing graphene and gold nanoparticles. J. Mater. Sci. 2017, 52, 11774–11784.

    Article  CAS  Google Scholar 

  26. Jaaoh, D.; Putson, C.; Muensit, N. Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline. Compos. Sci. Technol. 2016, 122, 97–103.

    Article  CAS  Google Scholar 

  27. Nawaka, K.; Putson, C. Enhanced electric field induced strain in electrostrictive polyurethane composites fibers with polyaniline (emeraldine salt) spider-web network. Compos. Sci. Technol. 2020, 198, 108293.

    Article  CAS  Google Scholar 

  28. Hu, Y.; Liu, X.; Tian, L.; Zhao, T.; Wang, H.; Liang, X.; Zhou, F.; Zhu, P.; Li, G.; Sun, R.; Wong, C. P. Multidimensional ternary hybrids with synergistically enhanced electrical performance for conductive nanocomposites and prosthetic electronic skin. ACS Appl. Mater. Interfaces 2018, 10, 38493–38505.

    Article  CAS  PubMed  Google Scholar 

  29. Li, M.; Li, H.; Zhong, W.; Zhao, Q.; Wang, D. Stretchable conductive polypyrrole/polyurethane (PPY/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 2014, 6, 1313–1319.

    Article  CAS  PubMed  Google Scholar 

  30. Liow, K. S.; Sipaut, C. S.; Jafarzadeh, M. Polypyrrole- and polyaniline-surface modified nanosilica as quasi-solid state electrolyte ingredients for dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 2018, 29, 21097–21108.

    CAS  Google Scholar 

  31. Liow, K. S.; Sipaut, C. S.; Ung, M. C.; Dayou, J. Effect of incorporating different polyaniline-surface modified nanosilica content into polyurethane-based quasi-solid-state electrolyte for dye-sensitized solar cells. J. Appl. Polym. Sci. 2020, 137, e49147.

    Article  CAS  Google Scholar 

  32. Luo, J; Wang, X.; Li, J.; Zhao, X.; Wang, F. Conductive hybrid film from polyaniline and polyurethane-silica. Polymer 2007, 48, 4368–4374.

    Article  CAS  Google Scholar 

  33. Liu, B. T.; Syu, J. R.; Wang, D. H. Conductive polyurethane composites containing polyaniline-coated nano-silica. J. Colloid Interface Sci. 2013, 393, 138–142.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y.; Li, T.; Wang, X.; Ma, P.; Bai, H.; Dong, W. Superior performance of polyurethane based on natural melanin nanoparticle. Biomacromolecules 2016, 17, 3782–3789.

    Article  CAS  PubMed  Google Scholar 

  35. Pei, A.; Malho, J. M.; Ruokolainen, J.; Zhou, Q.; Berglund, L.A. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 2011, 44, 4422–4427.

    Article  CAS  Google Scholar 

  36. Tien, Y. I.; Wei, K. H. Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 2001, 42, 3213–3221.

    Article  CAS  Google Scholar 

  37. Kojio, K.; Nakamura, S.; Furukawa, M. Effect of side methyl groups of polymer glycol on elongation-induced crystallization behavior of polyurethane elastomers. Polymer 2004, 45, 8147–8152.

    Article  CAS  Google Scholar 

  38. Wei, Z.; Liu, Z.; Fu, X.; Wang, Y.; Yuan, A.; Lei, J. Effect of crystalline structure on water resistance of waterborne polyurethane. Eur. Polym. J. 2021, 157, 110647.

    Article  CAS  Google Scholar 

  39. He, Y.; Zhang, X.; Runt, J. The role of diisocyanate structure on microphase separation of solution polymerized polyureas. Polymer 2014, 55, 906–913.

    Article  CAS  Google Scholar 

  40. Li, F.; Ma, Y.; Chen, L.; Li, H.; Zhou, H.; Chen, J. In-situ polymerization of polyurethane/aniline oligomer functionalized graphene oxide composite coatings with enhanced mechanical, tribological and corrosion protection properties. Chem. Eng. J. 2021, 425, 130006.

    Article  CAS  Google Scholar 

  41. Gui, H.; Guan, G.; Zhang, T.; Guo, Q. Microphase-separated, hierarchical macroporous polyurethane from a nonaqueous emulsion-templated reactive block copolymer. Chem. Eng. J. 2019, 365, 369–377.

    Article  CAS  Google Scholar 

  42. Tian, C.; Fu, S. Y.; Meng, Q. J.; Lucia, L. A. New insights into the material chemistry of polycaprolactone-grafted cellulose nanofibrils/polyurethane nanocomposites. Cellulose 2016, 23, 2457–2473.

    Article  CAS  Google Scholar 

  43. Tian, Y.; Zhang, X.; Geng, H. Z.; Yang, H. J.; Li, C.; Da, S. X. Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC Adv. 2017, 7, 53018–53024.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Advance Research Foundation of Shaanxi University of Science and Technology (No. 2020XSGG-07), the National Natural Science Foundation of China (No. 31570578) and Key Research and Development Program of Shaanxi (No. 2022GY-278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Jiang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2703_MOESM1_ESM.pdf

A Novel Ternary Composite of Polyurethane/Polyaniline/Nanosilica with Antistatic Property and Excellent Mechanical Strength: Preparation and Mechanism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, XZ., Yang, R., Ma, JJ. et al. A Novel Ternary Composite of Polyurethane/Polyaniline/Nanosilica with Antistatic Property and Excellent Mechanical Strength: Preparation and Mechanism. Chin J Polym Sci 40, 789–798 (2022). https://doi.org/10.1007/s10118-022-2703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2703-7

Keywords

Navigation