Skip to main content
Log in

Carbon Dots Intensified Mechanochemiluminescence from Waterborne Polyurethanes as Tunable Force Sensing Materials

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

1,2-Dioxetane is a well-known chemiluminescent mechanophore allowing real-time monitoring of polymer chain scission, but usually suffers from fluorescence quenching in polar environments. Herein, a series of mechanochemiluminescent waterborne polyurethanes/carbon dots composites (WPU-CDs) have been synthesized by incorporating fluorescent CDs to promote the energy transfer process in different environments. The resulting bulk WPUs, and in particular, their swollen films filled with a large amount of polar solvents (water and ionic liquid) emit intense mechanochemiluminescence. Thus force-induced covalent bond scission and stress distribution within these different WPU-CDs films can be sensitively visualized. Furthermore, the ionic liquid containing films exhibited both electrical and luminescent signal changes under stretching, which offer a new kind of force sensor responsive at a broad detecting strain range and for multi-mode strain analysis. This study is expected to stimulate new research endeavors in mechanistic insight on waterborne polyurethanes and the corresponding stretchable sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honarkar, H. Waterborne polyurethanes: a review. J. Disper. Sci. Technol. 2018, 39, 507–516.

    Article  CAS  Google Scholar 

  2. Nelson, A. M.; Long, T. E. Synthesis, properties, and applications of ion-containing polyurethane segmented copolymers. Macromol. Chem. Phys. 2014, 215, 2161–2174.

    Article  CAS  Google Scholar 

  3. Song, Y.; Gao, Y.; Pan, Z.; Zhang, Y.; Li, J.; Wang, K.; Li, J.; Tan, H.; Fu, Q. Preparation and characterization of controlled heparin release waterborne polyurethane coating systems. Chinese J. Polym. Sci. 2016, 34, 679–687.

    Article  CAS  Google Scholar 

  4. Yang, N.; Yang, H.; Shao, Z.; Guo, M. Ultrastrong and tough supramolecular hydrogels from multiurea linkage segmented copolymers with tractable processablity and recyclability. Macromol. Rapid Commun. 2017, 38, 1700275.

    Article  Google Scholar 

  5. Sun, J.; Keplinger, C.; Whitesides, G. M.; Suo, Z. Ionic skin. Adv. Mater. 2014, 26, 7608–7614.

    Article  CAS  Google Scholar 

  6. Li, T.; Wang, Y.; Li, S.; Liu, X.; Sun, J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 2020, 32, 2002706.

    Article  Google Scholar 

  7. Kim, N.; Lienemann, S.; Petsagkourakis, I.; Mengistie, D. A.; Kee, S.; Ederth, T.; Gueskine, V.; Leclere, P.; Lazzaroni, R.; Crispin, X.; Tybrandt, K. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 2020, 11, 1424–1433.

    Article  Google Scholar 

  8. Chen, Y.; Mellot, G.; van Luijk, D.; Creton, C.; Sijbesma, R. P. Mechanochemical tools for polymer materials. Chem. Soc. Rev. 2021, 50, 4100–4140.

    Article  CAS  Google Scholar 

  9. Davis, D. A.; Hamilton, A.; Yang, J.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martínez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68–72.

    Article  CAS  Google Scholar 

  10. Wang, L.; Yang, K.; Zhou, Q.; Yang, H.; He, J.; Zhang, X. Rhodamine mechanophore functionalized mechanochromic double network hydrogels with high sensitivity to stress. Chinese J. Polym. Sci. 2020, 38, 24–36.

    Article  CAS  Google Scholar 

  11. Chen, Y.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 2012, 4, 559–562.

    Article  CAS  Google Scholar 

  12. Chen, Y.; Sijbesma, R. P. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers. Macromolecules 2014, 47, 3797–3805.

    Article  CAS  Google Scholar 

  13. Liu, S.; Yuan, Y.; Li, J.; Sun, S.; Chen, Y. An optomechanical study of mechanoluminescent elastomeric polyurethanes with different hard segments. Polym. Chem. 2020, 11, 1877–1884.

    Article  CAS  Google Scholar 

  14. Yan, C.; Yang, F.; Wu, M.; Yuan, Y.; Chen, F.; Chen, Y. Phase-locked dynamic and mechanoresponsive bonds design toward robust and mechanoluminescent self-healing polyurethanes: a microscopic view of self-healing behaviors. Macromolecules 2019, 52, 9376–9382.

    Article  CAS  Google Scholar 

  15. Yuan, W.; Yuan, Y.; Yang, F.; Wu, M.; Chen, Y. Improving mechanoluminescent sensitivity of 1,2-dioxetane-containing thermoplastic polyurethanes by controlling energy transfer across polymer chains. Macromolecules 2018, 51, 9019–9025.

    Article  CAS  Google Scholar 

  16. Deng, Y.; Yuan, Y.; Chen, Y. Covalently cross-linked and mechanochemiluminescent polyolefins capable of self-healing and self-reporting. CCS Chem. 2020, 2, 1316–1324.

    Google Scholar 

  17. Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R. P.; Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 2014, 344, 186–189.

    Article  CAS  Google Scholar 

  18. Millereau, P.; Ducrot, E.; Clough, J. M.; Wiseman, M. E.; Brown, H. R.; Sijbesma, R. P.; Creton, C. Mechanics of elastomeric molecular composites. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 9110–9115.

    Article  CAS  Google Scholar 

  19. Chen, W.; Yuan, Y.; Chen, Y. Visualized bond scission in mechanochemiluminescent polymethyl acrylate/cellulose nanocrystals composites. ACS Macro Lett. 2020, 9, 438–442.

    Article  CAS  Google Scholar 

  20. Clough, J. M.; Creton, C.; Craig, S. L.; Sijbesma, R. P. Covalent bond scission in the mullins effect of a filled elastomer: real-time visualization with mechanoluminescence. Adv. Funct. Mater. 2016, 26, 9063–9074.

    Article  CAS  Google Scholar 

  21. Yuan, Y.; Chen, W.; Ma, Z.; Deng, Y.; Chen, Y.; Chen, Y.; Hu, W. Enhanced optomechanical properties of mechanochemiluminescent poly(methyl acrylate) composites with granulated fluorescent conjugated microporous polymer fillers. Chem. Sci. 2019, 10, 2206–2211.

    Article  CAS  Google Scholar 

  22. Matsumoto, M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. J. Photochem. Photobiol. C 2004, 5, 27–53.

    Article  CAS  Google Scholar 

  23. Yang, F.; Yuan, Y.; Sijbesma, R. P.; Chen, Y. Sensitized mechanoluminescence design toward mechanically induced intense red emission from transparent polymer films. Macromolecules 2020, 53, 905–912.

    Article  CAS  Google Scholar 

  24. Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The fluorescence mechanismof carbon dots, and methods for tuning their emission color: a review. Microchim. Acta 2019, 186, 583.

    Article  Google Scholar 

  25. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744.

    Article  CAS  Google Scholar 

  26. Du, X.; Wang, C.; Wu, G.; Chen, S. The rapid and large-scale production of carbon quantum dots and their integration with polymers. Angew. Chem. Int. Ed. 2021, 60, 8585–8595.

    Article  CAS  Google Scholar 

  27. Lim, S. Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  CAS  Google Scholar 

  28. Liu, J.; Li, R.; Yang, B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

    Article  CAS  Google Scholar 

  29. Liu, M.; Chen, B.; Li, C.; Huang, C. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471.

    Article  CAS  Google Scholar 

  30. Qiang, T.; Han, M.; Wang, X. Waterborne polyurethane/carbon quantum dot nanocomposite as a surface coating material exhibiting outstanding luminescent performance. Prog. Org. Coat. 2020, 138, 105433.

    Article  CAS  Google Scholar 

  31. Tsuda, R.; Kodama, K.; Ueki, T.; Kokubo, H.; Imabayashi, S.; Watanabe, M. LCST-type liquid-liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chem. Commun. 2008, 4939–4941.

    Google Scholar 

  32. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 2015, 54, 5360–5363.

    Article  CAS  Google Scholar 

  33. Shen, C.; Lou, Q.; Lv, C.; Zang, J.; Qu, S.; Dong, L.; Shan, C. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.

    Article  Google Scholar 

  34. Zheng, A.; Guo, T.; Guan, F.; Chen, X.; Shu, Y.; Wang, J. Ionic liquid mediated carbon dots: preparations, properties and applications. Trac-trend Anal. Chem. 2019, 119, 115638.

    Article  CAS  Google Scholar 

  35. Liu, Y.; Liu, D.; Li, S.; Liang, H.; Zhu, F. Investigation on viscoelasticity of waterborne polyurethane with azobenzene-containing pendant groups under ultraviolet and visible-light irradiation. Chinese J. Polym. Sci. 2019, 37, 1267–1272.

    Article  CAS  Google Scholar 

  36. Zhang, Q.; Wang, Y.; Xing, C.; Cai, Y.; Xi, K.; Jia, X. Light and force dual-responsive waterborne polyurethane in multiple states. RSC Adv. 2017, 7, 12682–12689.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21905200, 21975178 and 21734006), and China Postdoctoral Science Foundation (No. 2019M661006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Lan Chen or Yuan Yuan.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, BH., Chen, W., Wei, WY. et al. Carbon Dots Intensified Mechanochemiluminescence from Waterborne Polyurethanes as Tunable Force Sensing Materials. Chin J Polym Sci 39, 1403–1411 (2021). https://doi.org/10.1007/s10118-021-2601-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2601-4

Keywords

Navigation