Skip to main content
Log in

Optical and mechanical properties of polyurethane/surface-modified nanocrystalline cellulose composites

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In order to improve the optical and mechanical performances of waterborne polyurethane (WPU), nanocrystalline cellulose (NCC)/WPU composites were synthesized in this study. NCC (prepared by acid hydrolysis of cotton fiber) was modified by (3-aminopropyl)triethoxysilane (APTES) to enhance its compatibility with WPU, and the surface-modified NCC was characterized by grafting ratio, crystallinity and contact angle (CA). NCC/WPU composites were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TG). The anti-yellowing property, specular gloss, pencil hardness, and abrasion resistance of NCC/WPU composites were investigated by the methods of Chinese National Standards GB/T 23999-2009, GB/T 9754-2007, GB/T 6739-2006 and GB/T 1768-2006, respectively. The results showed that the grafting ratio of NCC modified by 6% APTES was 36.01% and the crystallinity of modified NCC was decreased with the enhancement of APTES. CA of the modified NCC was decreased by 28.8% and the nanoparticles were homogeneously dispersed in the WPU matrix. The XRD patterns of the NCC/WPU composites were relatively steady, while the thermal stability of the composites was enhanced by 6.7% with 1.0 wt% modified NCC. Modified NCC affected the specular gloss of NCC/WPU composites more obviously than the anti-yellowing property. The pencil hardness of NCC/WPU composites was increased from 2H to 4H by addition of NCC and the abrasion resistance of the composites was enhanced significantly. In general, NCC/WPU composites showed significant improvements in the optical and mechanical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X.D., Dong, H. and Li, C.M., Biomacromolecules, 2007, 8(3): 899

    Article  CAS  Google Scholar 

  2. Rahman, M.M. and Lee, W.K., J. Appl. Polym. Sci., 2009, 114(6): 3767

    Article  CAS  Google Scholar 

  3. Liao, Y.C., Wu, X.F., Wang, Z., Yue, R.L., Liu, G. and Chen, Y.F., Mater. Chem. Phys., 2012, 133(2–3): 642

    Article  CAS  Google Scholar 

  4. Sun, D.X., Miao, X., Zhang, K.J., Kim, H. and Yuan, Y.G., J. Colloid Interf. Sci., 2011, 361(2): 483

    Article  CAS  Google Scholar 

  5. Dolatzadeh, F., Moradian, S. and Jalili, M.M., Corros. Sci., 2011, 53(12): 4248

    Article  CAS  Google Scholar 

  6. Lee, S.K., Yoon, S.H., Chung, I., Hartwig, A. and Kim, B.K., J. Polym. Sci. Part A: Polym. Chem., 2011, 49(3): 634

    Article  CAS  Google Scholar 

  7. Nikje, M.M.A. and Tehrani, Z.M., Polym-Plast. Technol., 2010, 49(8): 812

    Article  CAS  Google Scholar 

  8. Gao, X.Y., Zhu, Y.C., Zhou, S., Gao, W., Wang, Z.C. and Zhou, B., Colloid Surface A., 2011, 377(1–3): 312

    Article  CAS  Google Scholar 

  9. Choi, H.Y., Bae, C.Y. and Kim, B.K., Prog. Org. Coat., 2010, 68(4): 356

    Article  CAS  Google Scholar 

  10. Liu, X.H., Zhao, Y., Liu, Z., Wang, D.J., Wu, J.G. and Xu, D.F., Chem. J. Chinese U., 2008, 29(10): 2096

    CAS  Google Scholar 

  11. Javaheriannaghash, H. and Ghazavi, N., J. Coat. Technol. Res., 2012, 9(3): 323

    Article  CAS  Google Scholar 

  12. Dai, Z., Li, Z.H., Li, L. and Xu, G.W., Polym. Adv. Technol., 2011, 22(12): 1905

    Article  CAS  Google Scholar 

  13. Zhu, X.L., Jiang, X.B., Zhang, Z.G. and Kong, X.Z., Chinese J. Polym. Sci., 2011, 29(2): 259

    Article  CAS  Google Scholar 

  14. Zhang, S.G., Guo, Q., Zhao, Z.P., Sun, J.L. and Nie, Z.J., Mater. Performance, 2012, 51(4): 35

    CAS  Google Scholar 

  15. Fang, Z.H., Shang, J.J., Huang, Y.X., Wang, J., Li, D.Q. and Liu, Z.Y., Express Polym. Lett., 2010, 4(11): 704

    Article  CAS  Google Scholar 

  16. Qiu, F. X., Zhang, J.L., Wu, D.M. and Yang, D.Y., Plast. Rubber Compos., 2010, 39(10): 454

    Article  CAS  Google Scholar 

  17. Pathak, S.S., Sharma, A. and Khanna, A.S., Prog. Org. Coat., 2009, 65(2): 206

    Article  CAS  Google Scholar 

  18. Zaman, M., Xiao, H.N., Chibante, F. and Ni, Y.H., Carbohyd. Polym., 2012, 89(1–5): 163

    Article  CAS  Google Scholar 

  19. Eyley, S. and Thielemans, W., Chem. Commun., 2011, 14(47): 4177

    Article  Google Scholar 

  20. Hubbe, M.A., Rojas, O.J., Lucia, L.A. and Sain, M., BioResources, 2008, 3(3): 929

    Google Scholar 

  21. Liu, H., Cui, S.Q., Shang, S.B., Wang, D. and Song, J., Carbohyd. Polym., 2013, 96(2): 510

    Article  CAS  Google Scholar 

  22. Lin, S., Huang, J., Chang, P.R., Wei, S.W., Xu, Y.X. and Zhang, Q.X., Carbohyd. Polym., 2013, 95(1): 91

    Article  CAS  Google Scholar 

  23. Wang, Y.X., Tian, H.F. and Zhang, L.N., Carbohyd. Polym., 2010, 80(3): 665

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-wen Pu  (蒲俊文).

Additional information

This work was financially supported by the “Fundamental Research Funds for the Central Universities” (No. BLYJ201301) and the Forestry Industry Research Special Funds for Public Welfare Projects: Research and Demonstration of Fast-growing Wood Modification and Application (201204702-B2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., She, Y., Zheng, X. et al. Optical and mechanical properties of polyurethane/surface-modified nanocrystalline cellulose composites. Chin J Polym Sci 32, 1363–1372 (2014). https://doi.org/10.1007/s10118-014-1526-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-014-1526-6

Keywords

Navigation