Skip to main content
Log in

Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copolymer thermoplastic polyurethane (C-TPU) was extruded with intumescing flame-retardant formulations based on ammonium polyphosphate and macromolecular nitrogen phosphorus. Carbon nanofiber and carbon nanotube were used as the additional carbon source. The synergism effect of each additive and their intumescing combinations on C-TPU composites degradation, smoke suppression, flammability, and melt rheology was systematically investigated by thermogravimetric (TG), smoke density test and cone calorimeter test (CCT), etc. The TG results showed that carbon particles combined with IFR showed a notable improvement in thermostability at high temperature, and this intumescing flame-retardant system effectively catalyzed the decomposition of macromolecule volatiles that is the major source of smoke particles. This intumescing flame-retardant system also promoted the generation of compact and continual char layer, reduced the peak heat release rate by more than 80% and the smoke generation by 50% obtained from CCT. What is more, the scanning electron microscopy (SEM) showed that this flame-retardant system could promote the formation of a char layer with network structure which helps produce composites with superior flame retardant. A synergistic effect on enhancing the limit oxygen index (LOI) and restricting the dropping of the composites is also obtained. This study has a potential contribution to the development of carbon-based flame-retardant composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wang X, Kalali EN, Wan J-T et al (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46. https://doi.org/10.1016/j.progpolymsci.2017.02.001

    Article  Google Scholar 

  2. Huang GB, Wang SQ, Song PA et al (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos Part A Appl Sci Manuf 59:18–25. https://doi.org/10.1016/j.compositesa.2013.12.010

    Article  Google Scholar 

  3. Zhang QJ, Zhan J, Zhou KQ et al (2015) The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites. Polym Degrad Stab 115:38–44. https://doi.org/10.1016/j.polymdegradstab.2015.02.010

    Article  Google Scholar 

  4. Liu L, Zhao XL, Ma CY et al (2016) Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim 126:1821–1830. https://doi.org/10.1007/s10973-016-5815-x

    Article  Google Scholar 

  5. Yuan BH, Fan A, Yang M et al (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab 143:42–56. https://doi.org/10.1016/j.polymdegradstab.2017.06.015

    Article  Google Scholar 

  6. Zhang XT, Shen Q, Zhang XY et al (2016) Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J Mater Sci 51:10361–10374. https://doi.org/10.1007/s10853-016-0247-3

    Article  Google Scholar 

  7. Jiao CM, Zhao XL, Song WK et al (2015) Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim 120:1173–1181. https://doi.org/10.1007/s10973-014-4377-z

    Article  Google Scholar 

  8. Chen XL, Jiang YF, Jiao CM (2014) Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater 266:114–121. https://doi.org/10.1016/j.jhazmat.2013.12.025

    Article  Google Scholar 

  9. Shi YQ, Long Z, Yu B et al (2015) Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J Mater Chem A 3:17064–17073. https://doi.org/10.1039/c5ta04349b

    Article  Google Scholar 

  10. Yuan Y, Yang HY, Yu B et al (2016) Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind Eng Chem Res 55:10813–10822. https://doi.org/10.1021/acs.iecr.6b02942

    Article  Google Scholar 

  11. Shi YQ, Yu B, Duan LJ et al (2017) Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater 332:87–96. https://doi.org/10.1016/j.jhazmat.2017.03.006

    Article  Google Scholar 

  12. Tang WF, Zhang S, Gu XY et al (2016) Effects of kaolinite nanoroll on the flammability of polypropylene nanocomposites. Appl Clay Sci 132–133:579–588. https://doi.org/10.1016/j.clay.2016.08.008

    Article  Google Scholar 

  13. Thostenson ET, Li WZ, Wang DZ et al (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037. https://doi.org/10.1063/1.1466880

    Article  Google Scholar 

  14. Jagadish PR, Khalid M, Amin N et al (2017) Process optimisation for n-type Bi2Te3 films electrodeposited on flexible recycled carbon fibre using response surface methodology. J Mater Sci 52:11467–11481. https://doi.org/10.1007/s10853-017-1284-2

    Article  Google Scholar 

  15. Zhao XL, Chen CK, Chen XL (2016) Effects of carbon fibers on the flammability and smoke emission characteristics of halogen-free thermoplastic polyurethane/ammonium polyphosphate. J Mater Sci 51:3762–3771. https://doi.org/10.1007/s10853-015-9694-5

    Article  Google Scholar 

  16. Ramgobin A, Fontaine G, Penverne C et al (2017) Thermal stability and fire properties of salen and metallosalens as fire retardants in thermoplastic polyurethane (TPU). Materials 10:665. https://doi.org/10.3390/ma10060665

    Article  Google Scholar 

  17. He QL, Yuan TT, Yan XR et al (2014) Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight. Macromol Chem Phys 215:327–340. https://doi.org/10.1002/macp.201300608

    Article  Google Scholar 

  18. Yang HF, Gong J, Wen X et al (2015) Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol 113:31–37. https://doi.org/10.1016/j.compscitech.2015.03.013

    Article  Google Scholar 

  19. Wang X, Song L, Pornwannchai W et al (2013) The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites. Compos Part A Appl Sci Manuf 53:88–96. https://doi.org/10.1016/j.compositesa.2013.05.017

    Article  Google Scholar 

  20. Bourbigot S, Fontaine G, Gallos A et al (2011) Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Adv Technol 22:30–37. https://doi.org/10.1002/pat.1715

    Article  Google Scholar 

  21. Du BX, Fang ZP (2011) Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym Degrad Stab 96:1725–1731. https://doi.org/10.1016/j.polymdegradstab.2011.08.002

    Article  Google Scholar 

  22. Wu Q, Zhu W, Zhang C et al (2010) Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 48:1799–1806. https://doi.org/10.1016/j.carbon.2010.01.023

    Article  Google Scholar 

  23. Makhlouf G, Hassan M, Nour M et al (2017) Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J Therm Anal Calorim 130:1031–1041. https://doi.org/10.1007/s10973-017-6418-x

    Article  Google Scholar 

  24. Zhu HF, Zhu QL, Li J et al (2011) Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym Degrad Stab 96:183–189. https://doi.org/10.1016/j.polymdegradstab.2010.11.017

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (NSFC) through Grants 51576212, 51534008, and 51622403, and the National Key Research and Development Project of China through Grants 2016YFC0802501. The authors appreciate the supports deeply.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Zhao or Congling Shi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhao, X., Shi, C. et al. Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J Mater Sci 53, 6053–6064 (2018). https://doi.org/10.1007/s10853-017-1970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1970-0

Keywords

Navigation