Skip to main content
Log in

Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria

  • Invited Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1

Similar content being viewed by others

References

  • Abdelhamid AG, El-Masry SS, El-Dougdoug NK. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA Journal. 10: 337-350 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology. 37:420–423 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 215: 403-410 (1990)

    Article  CAS  PubMed  Google Scholar 

  • Alvarenga DO, Moreira LM, Chandler M, Varani AM. Chapter 7 genetic elements in prokaryotic genomes. Methods in Molecular Biology. 1704 (2018)

  • Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 32: 3380-3387 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Research. 44: W16 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold JW, Simpson JB, Roach J, Kwintkiewicz J, Azcarate-Peril MA. Intra-species genomic and physiological variability impact stress resistance in strains of probiotic potential. Frontiers in Microbiology. 9: 1-14 (2018)

    Article  CAS  Google Scholar 

  • Asrar FM, O’Connor DL. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. Journal of Nutritional Biochemistry. 16: 587-593 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Azam R, Ghafouri-Fard S, Tabrizi M, Modarressi MH, Ebrahimzadeh-Vesal R, Daneshvar M, Mobasheri MB, Motevaseli E. Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pacific Journal of Cancer Prevention. 15: 4255-4259 (2014)

    Article  PubMed  Google Scholar 

  • Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. 9: 1-15 (2008)

    Article  Google Scholar 

  • Bagon BB, Diane V, Valeriano V, Kyoung Oh J, Alain E, Pajarillo B, Lee JY, Kang D-K. Exoproteome Perspective on the Bile Stress Response of Lactobacillus johnsonii. Proteomes. 9: 1-14 (2021)

    Article  Google Scholar 

  • Bansal AK. Bioinformatics in microbial biotechnology – a mini review. Microbial Cell Factories. 4: 19 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315: 1709-1712 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, Bye-A-Jee H, Coetzee R, Cukura A, Silva A Da, Denny P, Dogan T, Ebenezer TG, Fan J, Castro LG, Garmiri P, Georghiou G, Gonzales L, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Jokinen P, Joshi V, Jyothi D, Lock A, Lopez R, Luciani A, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Menchi M, Mishra A, Moulang K, Nightingale A, Oliveira CS, Pundir S, Qi G, Raj S, Rice D, Lopez MR, Saidi R, Sampson J, Sawford T, Speretta E, Turner E, Tyagi N, Vasudev P, Volynkin V, Warner K, Watkins X, Zaru R, Zellner H, Bridge A, Poux S, Redaschi N, Aimo L, Argoud-Puy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Bolleman J, Boutet E, Breuza L, Casals-Casas C, de Castro E, Echioukh KC, Coudert E, Cuche B, Doche M, Dornevil D, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Hyka-Nouspikel N, Jungo F, Keller G, Kerhornou A, Lara V, Le Mercier P, Lieberherr D, Lombardot T, Martin X, Masson P, Morgat A, Neto TB, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Pozzato M, Pruess M, Rivoire C, Sigrist C, Sonesson K, Stutz A, Sundaram S, Tognolli M, Verbregue L, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Garavelli JS, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Q, Wang Y, Yeh LS, Zhang J. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research. 49: D480-D489 (2021)

    Article  Google Scholar 

  • Beck BR, Park GS, Lee YH, Im S, Jeong DY, Kang J. Whole genome analysis of Lactobacillus plantarum strains isolated from kimchi and determination of probiotic properties to treat mucosal infections by Candida albicans and Gardnerella vaginalis. Frontiers in Microbiology. 10: 1-13 (2019)

    Article  CAS  Google Scholar 

  • Bergsveinson J, Ziola B. Comparative genomic and plasmid analysis of beer-spoiling and non-beer-spoiling Lactobacillus brevis isolates. Canadian Journal of Microbiology. 63: 970-983 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, Sl Brinkman F. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Research. 45: W30 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M, Goesmann A. EDGAR: A software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics. 154: 1-14 (2009)

    Google Scholar 

  • de Boissier P, Habermann BH. A practical guide to orthology resources. (2016)

    Article  Google Scholar 

  • Borriello SP, Hammes WP, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V. Safety of Probiotics That Contain Lactobacilli or Bifidobacteria. Clinical Infectious Diseases. 36: 775-780 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason Iii JA, Stevens R, Vonstein V, Wattam AR, Fangfang Xia &. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports. 5: 1-6 (2015)

    Article  Google Scholar 

  • Cannon JP, Lee TA, Bolanos JT, Danziger LH. Pathogenic relevance of Lactobacillus: A retrospective review of over 200 cases. European Journal of Clinical Microbiology and Infectious Diseases. 24: 31-40 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Molecular Biology and Evolution. 38: 5825 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BI, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research. 37: 233-238 (2009)

    Article  Google Scholar 

  • Cárdenas N, Laiño JE, Delgado S, Jiménez E, Juárez del Valle M, Savoy de Giori G, Sesma F, Mayo B, Fernández L, LeBlanc JG, Rodríguez JM. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Applied Microbiology and Biotechnology. 99: 4343-4353 (2015)

    Article  PubMed  Google Scholar 

  • Carriço JA, Rossi M, Moran-Gilad J, Van Domselaar G, Ramirez M. A primer on microbial bioinformatics for nonbioinformaticians. Clinical Microbiology and Infection. 24: 342-349 (2018)

    Article  PubMed  Google Scholar 

  • Chaillou S, Champomier-Vergès MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongère E, Bossy R, Loux V, Zagorec M. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nature Biotechnology. 23: 1527-1533 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Mackey AJ, Stoeckert CJ, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic acids research. 34: 363-368 (2006)

    Article  Google Scholar 

  • Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Research. 33 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Choi EA, Chang HC. Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT - Food Science and Technology. 62: 210-217 (2015)

    Article  CAS  Google Scholar 

  • Chondrou P, Karapetsas A, Kiousi DE, Tsela D, Anestopoulos I, Kotsianidis I. Lactobacillus paracasei K5 displays adhesion , anti-proliferative activity and apoptotic effects in human colon cancer cells. Beneficial Microbes. 1–9 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Collins J, van Pijkeren JP, Svensson L, Claesson MJ, Sturme M, Li Y, Cooney JC, van Sinderen D, Walker AW, Parkhill J, Shannon O, O’Toole PW. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Molecular Microbiology. 85:862–877 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology. 11:95–105 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Research. 14:1394–1403 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien M, van Hylckama Vlieg JET. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology. 23:354–366 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann MA, Beyvers S, Christian Nkouamedjo-Fankep R, Harald P, Hanel G, Jelonek L, Blom J, Goesmann A. EDGAR3.0: comparative genomics and phylogenomics on a scalable infrastructure. Nucleic Acids Research. 49: W185-W192 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez V, Angel D, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Pettersson OV, Amselem J, Bouri L, Bocs S, Klopp C, Gibrat J-F, Vlasova A, Leskosek BL, Soler L, Binzer-Panchal M, Lantz H. Ten steps to get started in Genome Assembly and Annotation. F1000Research. 148: 1-24 (2018)

    Google Scholar 

  • Douillard FP, Ribbera A, Järvinen HM, Kant R, Pietilä TE, Randazzo C, Paulin L, Laine PK, Caggia C, von Ossowski I, Reunanen J, Satokari R, Salminen S, Palva A, de Vosa WM. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and Environmental Microbiology. 79:1923–1933 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douillard FP, de Vos WM. Functional genomics of lactic acid bacteria: From food to health. Microbial Cell Factories. 13 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Drissi F, Merhej V, Angelakis E, Kaoutari A El, Carrière F, Henrissat B, Raoult D. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutrition and Diabetes. 4 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, Leulier F, Gänzle M, Walter J. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS microbiology reviews. 41:S27–S48 (2017)

    Article  PubMed  Google Scholar 

  • Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 5:1–19 (2004)

    Article  Google Scholar 

  • Eisenbach L, Geissler AJ, Ehrmann MA, Vogel RF. Comparative genomics of Lactobacillus sakei supports the development of starter strain combinations. Microbiological Research. 221:1–9 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Eisenbach L, Janßen D, Ehrmann MA, Vogel RF. Comparative genomics of Lactobacillus curvatus enables prediction of traits relating to adaptation and strategies of assertiveness in sausage fermentation. International Journal of Food Microbiology. 286:37–47 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Evanovich E, De Souza Mendonça Mattos PJ, Guerreiro JF. Comparative genomic analysis of Lactobacillus plantarum: An overview. International Journal of Genomics. 2019 (2019)

    Article  Google Scholar 

  • Feyereisen M, Mahony J, Kelleher P, Roberts RJ, O’Sullivan T, Geertman JMA, Van Sinderen D. Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics. 20:1–15 (2019)

    Article  CAS  Google Scholar 

  • Fitch WM. Distinguishing homologous from analogous proteins. Systematic Zoology. 19:99–113 (1970)

    Article  CAS  PubMed  Google Scholar 

  • Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NCK, Patil PB, Juge N, MacKenzie DA, Pearson BM, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Walter J. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genetics. 7 (2011)

    Article  Google Scholar 

  • Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Research. 47:195–202 (2018)

    Article  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin E V. Expanded Microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Research. 43:D261–D269 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Gauthier J, Vincent AT, Charette SJ, Derome N. A brief history of bioinformatics. Briefings in Bioinformatics. 1–16 (2018)

    Google Scholar 

  • El Ghany KA, Hamouda R, Elhafez EA, Mahrous H, Salem-Bekhit M, Hamza HA. A potential role of Lactobacillus acidophilus LA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnology and Biotechnological Equipment. 29:977–983 (2015)

    Article  Google Scholar 

  • Goel A, Halami PM, Tamang JP. Genome Analysis of Lactobacillus plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes. Frontiers in Microbiology. 11:1–12 (2020)

    Article  Google Scholar 

  • Greppi A, Asare PT, Schwab C, Zemp N, Stephan R, Lacroix C. Isolation and Comparative Genomic Analysis of Reuterin-Producing Lactobacillus reuteri From the Chicken Gastrointestinal Tract. Frontiers in Microbiology. 1166:1-17 (2020)

    Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research. 35:52–57 (2007a)

    Article  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 8:1–10 (2007b)

    Article  Google Scholar 

  • van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto J-M, Walunas T, Gibrat J-F, Bessie` res P, Weissenbach J, Ehrlich SD, Maguin E. Open access bulgaricus : a chronicle of evolution in action. PNAS. 103:9274–9279 (2006)

    PubMed  PubMed Central  Google Scholar 

  • Häberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Archives of Biochemistry and Biophysics. 536:101–108 (2013)

    Article  PubMed  Google Scholar 

  • Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, Application Note. 34:292–293 (2017)

    Google Scholar 

  • Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. TIGRFAMs and Genome Properties in 2013. Nucleic acids research. 41:D387–D395 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Research. 31:371–373 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BG. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution. 30:1229–1235 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Han KJ, Lee JE, Lee NK, Paik HD. Antioxidant and Anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade Diced-radish kimchi. Journal of Microbiology and Biotechnology. 30:591–598 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Heel AJ, De Jong A, Montalbá N-Ló Pez M, Kok J, Kuipers OP. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic acids research. 41:W448-453 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Heel AJ, De Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research. 46:W278–W281 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Jiang S, Huo D, Allaband C, Estaki M, Cantu V, Belda-Ferre P, Vázquez-Baeza Y, Zhu Q, Ma C, Li C, Zarrinpar A, Liu YY, Knight R, Zhang J. Candidate probiotic Lactiplantibacillus plantarum HNU082 rapidly and convergently evolves within human, mice, and zebrafish gut but differentially influences the resident microbiome. Microbiome. 151: 1-17 (2021)

    Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, Von Mering C, Bork P. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research. 47:D309–D314 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Hwang C, Lee N, Paik H. The anti-cancer potential of heat-killed Lactobacillus brevis KU15176 upon AGS cell lines through intrinsic apoptosis pathway. IJMS. 23:4073 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Yang B, Ross P, Stanton C, Zhang H, Zhao J, Chen W. Comparative genomics analysis of Lactobacillus mucosae from different niches. Genes. 95:1-20 (2020)

    Google Scholar 

  • Jin Ng Z, Abu Zarin M, Keong Lee C, Shun Tan J. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. The Royal Society of Chemistry. 10:38937–38964 (2020)

    Google Scholar 

  • Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition. 58:2743–2767 (2018)

    Article  CAS  PubMed  Google Scholar 

  • de Jong A, van Hijum SAFT, Bijlsma JJE, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Research. 34:273–279 (2006)

    Article  Google Scholar 

  • Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Science. 12:1652–1662 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research. 45:D353–D361 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Kankainen M, Paulin L, Tynkkynen S, Von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, De Vos WM. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proceedings of the National Academy of Sciences of the United States of America. 106:17193–17198 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanmani P, Albarracin L, Kobayashi H, Hebert EM, Saavedra L, Komatsu R, Gatica B, Miyazaki A, Ikeda-Ohtsubo W, Suda Y, Aso H, Egusa S, Mishima T, Salas-Burgos A, Takahashi H, Villena J, Kitazawa H. Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells. Frontiers in Immunology. 9:1–16 (2018)

    Article  Google Scholar 

  • Kant R, Rintahaka J, Yu X, Sigvart-Mattila P, Paulin L, Mecklin JP, Saarela M, Palva A, Von Ossowski I. A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus. PLoS ONE. 9 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Karin Lagesen DWU and TMW. Genome update. Microbiology Genome update. 156:603–608 (2010)

    Google Scholar 

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution. 30:772–780 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Choon H, Hae C, Kim Y. Complete genome sequence of Lactobacillus plantarum EM, A putative probiotic strain with the cholesterol - lowering effect and antimicrobial activity. Current Microbiology. (2020)

    Article  Google Scholar 

  • Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews. 29:393–409 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, E J Fiers MW, Stiekema W, Klein Lankhorst RM, Bron PA, Hoffer SM, Nierop Groot MN, Kerkhoven R, de Vries M, rn Ursing B, de Vos WM, Siezen RJ. Complete genome sequence of Lactobacillus plantarum WCFS1. PNAS. 100:1990–1995 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koryszewska-Bagińska A, Gawor J, Nowak A, Grynberg M, Aleksandrzak-Piekarczyk T. Comparative genomics and functional analysis of a highly adhesive dairy Lactobacillus paracasei subsp. paracasei IBB3423 strain. Applied Microbiology and Biotechnology. 103:7617–7634 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology. 305:567–580 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Langille MGI, Brinkman FSL. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics. 25:664–665 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Genes and molecules of Lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews. 72:728–764 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc JG, Laiñ JE, Juarez Del Valle M, Vannini V, Van Sinderen D, Taranto MP, Font De Valdez G, Savoy De Giori G, Sesma F. B-Group vitamin production by lactic acid bacteria-current knowledge and potential applications. Journal of Applied Microbiology. 111:1297–1309 (2011)

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology. 24:160–168 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Han GG, Kim EB, Choi YJ. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation. Microbiological Research. 205:48–58 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Li L, Stoeckert CJJ, Roos DS. OrthoMCL: Identification of ortholog groups for Eukaryotic genomes. Genome Research. 13:2178–2189 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Pop M. ARDB-Antibiotic resistance genes database. Nucleic Acids Research. 37:443–447 (2008)

    Article  CAS  Google Scholar 

  • Liu C, Zheng J, Ou X, Han Y. Anti-cancer substances and safety of lactic acid bacteria in clinical treatment. Frontiers in Microbiology. 12:1–11 (2021)

    Google Scholar 

  • Liu WH, Yang CH, Lin CT, Li SW, Cheng WS, Jiang YP, Wu CC, Chang CH, Tsai YC. Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathogens. 7:1–7 (2015)

    Article  Google Scholar 

  • Liu Y, Xiao W, Yu L, Tian F, Wang G, Lu W, Narbad A, Chen W, Zhai Q. Evidence from comparative genomic analyses indicating that: Lactobacillus -mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food and Function. 12:1121–1134 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proceedings of the National Academy of Sciences of the United States of America. 108:4688–4695 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay P, Knights D, Hutkins RW, Walter J. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host and Microbe. 20:515–526 (2016)

    Article  PubMed  Google Scholar 

  • Mao B, Yin R, Li X, Cui S, Zhang H, Zhao J, Chen W. Comparative genomic analysis of Lactiplantibacillus plantarum isolated from different niches. Genes. 12:1–13 (2021)

    Article  Google Scholar 

  • Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SAFT, Leulier F. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environmental Microbiology. 18:4974–4989 (2016)

    Article  CAS  PubMed  Google Scholar 

  • McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD. The comprehensive antibiotic resistance database. Antimicrobial Agents and Chemotherapy. 57:3348–3357 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, Henrissat B, Oozeer R, Cools-Portier S, Gobert G, Chervaux C, Knights D, Lozupone CA, Knight R, Duncan AE, Bain JR, Muehlbauer MJ, Newgard CB, Heath AC, Gordon JI. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Science Translational Medicine. 106:1-26 (2011)

    Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Research. 49:D412–D419 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O’sullivan DJ, Mckay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Research. 15:151–161 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nami Y, Haghshenas B, Radiah D, Rosli R. Assessment of probiotic potential and anticancer activity of newly isolated vaginal bacterium Lactobacillus plantarum 5BL. Microbiology and Immunology. 58:492–502 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Nyquist OL, McLeod A, Brede DA, Snipen L, Aakra Å, Nes IF. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Molecular Genetics and Genomics. 285:297–311 (2011)

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MM, Harris HMB, Lynch DB, Ross RP, O’Toole PW. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiology. 80:1-20 (2015)

    Google Scholar 

  • O’Sullivan O, O’Callaghan J, Sangrador-Vegas A, McAuliffe O, Slattery L, Kaleta P, Callanan M, Fitzgerald GF, Ross RP, Beresford T. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiology. 9:1–9 (2009)

    Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 27:29–34 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME Journal. 4:377–387 (2010)

    Article  PubMed  Google Scholar 

  • Ojala T, Kankainen M, Castro J, Cerca N, Edelman S, Westerlund-Wikström B, Paulin L, Holm L, Auvinen P. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics. 15:1–21 (2014)

    Article  Google Scholar 

  • Overbeek R, Larsen N, Walunas T, D’ Souza M, Pusch G, Selkov E, Liolios K, Joukov V, Kaznadzey D, Anderson I, Bhattacharyya A, Burd H, Gardner W, Hanke P, Kapatral V, Mikhailova N, Vasieva O, Osterman A, Vonstein V, Fonstein M, Ivanova N, Kyrpides N. The ErgoTM genome analysis and discovery system. Nucleic Acids Research. 31:164–171 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research. 42:D207–D214 (2013)

    Google Scholar 

  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics. 31:3691–3693 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R. Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Frontiers in Microbiology. 10:1–17 (2020)

    Article  Google Scholar 

  • Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Frontiers in Physiology. 6:1–18 (2015)

    Article  Google Scholar 

  • Petrova MI, Macklaim JM, Wuyts S, Verhoeven T, Vanderleyden J, Gloor GB, Lebeer S, Reid G. Comparative genomic and phenotypic analysis of the vaginal probiotic Lactobacillus rhamnosus GR-1. Frontiers in Microbiology. 9:1–12 (2018)

    Article  Google Scholar 

  • Pinto UM, Sun Z, Dias FS, Pimentel N, Rosa A, Marincola FC, Cosentino S, Pisano MB, Putzu D, Cesare Marincola F, Mossa V, Viale S, Fadda ME. Influence of autochthonous putative probiotic cultures on microbiota, lipid components and metabolome of Caciotta cheese. Frontiers in Microbiology. 11: 1-19 (2020)

    Google Scholar 

  • Putonti C, Shapiro JW, Ene A, Tsibere O, Wolfe AJ. Comparative Genomic Study of Lactobacillus jensenii and the Newly Defined Lactobacillus mulieris Species Identifies Species- Specific Functionality. mSphere. 5:1–5 (2020)

    Article  Google Scholar 

  • Quilodrán-Vega S, Albarracin L, Mansilla F, Arce L, Zhou B, Islam MA, Tomokiyo M, Al Kassaa I, Suda Y, Kitazawa H, Villena J. Functional and genomic characterization of Ligilactobacillus salivarius TUCO-L2 isolated from Lama glama milk: A promising immunobiotic strain to combat infections. Frontiers in Microbiology. 11:1–24 (2020)

    Article  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE-A database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Research. 38:2009–2011 (2009)

    Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Ad` M-A, Rajandream A, Barrell B. Artemis: sequence visualization and annotation. Bioinformatics Applications Note. 16:944–945 (2000)

    CAS  Google Scholar 

  • Salvador PBU, Dalmacio LMM, Kim SH, Kang D-K, Balolong MP. Immunomodulatory potential of four candidate probiotic Lactobacillus strains from plant and animal origin using comparative genomic analysis. Access Microbiology. 3: 1-9 (2021)

    Article  Google Scholar 

  • Saxami G, Karapetsas A, Lamprianidou E. Two potential probiotic Lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. Journal of Functional Foods. 24:461–471 (2016)

    Article  CAS  Google Scholar 

  • Schmid M, Muri J, Melidis D, Varadarajan AR, Somerville V, Wicki A, Moser A, Bourqui M, Wenzel C, Eugster-Meier E, Frey JE, Irmler S, Ahrens CH. Comparative genomics of completely sequenced Lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level. Frontiers in Microbiology. 9:1–20 (2018)

    Article  Google Scholar 

  • Seemann T. Genome analysis Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30:2068–2069 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Senan S, Prajapati JB, Joshi CG. Comparative genome-scale analysis of niche-based stress-responsive genes in Lactobacillus helveticus strains. Genome. 57:185–192 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Siezen RJ, Van Enckevort FHJ, Kleerebezem M, Teusink B. Genome data mining of lactic acid bacteria: The impact of bioinformatics. Current Opinion in Biotechnology. 15:105–115 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Research. 34:D32–D36 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Chung HJ, Lee IA, D’Souza R, Kim HJ, Hong ST. Elucidation of the anti-hyperammonemic mechanism of Lactobacillus amylovorus JBD401 by comparative genomic analysis. BMC genomics. 19:292 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Son S, Oh JD, Lee SH, Shin D, Kim Y. Comparative genomics of canine Lactobacillus reuteri reveals adaptation to a shared environment with humans. Genes and Genomics. 42:1107–1116 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Son SH, Jeon HL, Yang SJ, Lee NK, Paik HD. In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microbial Pathogenesis. 112:135–141 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P. CRISPR - A widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology. 6:181–186 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su P, Im H, Hsieh H, Kang’a S, Dunn NW. LlaFI, a type III restriction and modification system in Lactococcus lactis. Applied and Environmental Microbiology. 65:686–693 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun E, Ren F, Liu S, Ge S, Zhang M, Guo H, Jiang L, Zhang H, Zhao L. Complete genome sequence of Lactobacillus salivarius Ren, a probiotic strain with anti-tumor activity. Journal of Biotechnology. 210:57–58 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O’Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, De Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O’Toole PW. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications. 6:1–13 (2015)

    Article  Google Scholar 

  • Tarrah A, Pakroo S, Corich V, Giacomini A. Whole-genome sequence and comparative genome analysis of Lactobacillus paracasei DTA93, a promising probiotic lactic acid bacterium. Archives of Microbiology. 202:1997–2003 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Koonin E V., Lipman DJ. A genomic perspective on protein families. Science. 278:631–637 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research. 44:6614–6624 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegopoulos K, Stergiou OS, Kiousi DE, Tsifintaris M, Koletsou E, Papageorgiou AC, Argyri AA, Chorianopoulos N, Galanis A, Kolovos P. Genomic and phylogenetic analysis of Lactiplantibacillus plantarum L125, and evaluation of its anti-proliferative and cytotoxic activity in cancer cells. Biomedicines. 9:1718 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Current Opinion in Microbiology. 11:472–477 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Tukenmez U, Aktas B, Aslim B, Yavuz S. the relationship between the structural characteristics of lactobacilli-eps and its ability to induce apoptosis in colon cancer cells in vitro Ummugulsum. Nature Scientific Reports. 9:1–14 (2019)

    Google Scholar 

  • Tuo Y, Jiang S, Qian F, Mu G, Liu P, Guo Y, Ma C. Short communication: Antiproliferative effect of 8 different Lactobacillus strains on K562 cells. Journal of Dairy Science. 98:106–110 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Valeriano VD, Parungao-Balolong M, Kang D-K. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. Journal of Applied Microbiology. 117:485–497 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Valeriano VD V., Oh JK, Bagon BB, Kim H, Kang DK. Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics. 111:24–33 (2019)

    Article  CAS  PubMed  Google Scholar 

  • van der Veer C, Hertzberger RY, Bruisten SM, Tytgat HLP, Swanenburg J, Angelino-Bart A de K, Schuren F, Molenaar D, Reid G, de Vries H, Kort R. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: Implications for in vivo dominance of the vaginal microbiota. Microbiome. 7:1–14 (2019)

    Google Scholar 

  • Verce M, De Vuyst L, Weckx S. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food Microbiology. 89:103448 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microbial Cell Factories. 10:1–11 (2011)

    Article  Google Scholar 

  • Walsh CJ, Guinane CM, Hill C, Ross RP, O’Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiology. 15:1–11 (2015)

    Article  Google Scholar 

  • Walter J, Britton RA, Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proceedings of the National Academy of Sciences of the United States of America. 108:4645–4652 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Current Opinion in Biotechnology. 49:129–139 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yang B, Ross P, Stanton C, Zhang H, Zhao J, Chen W. Comparative Genomics Analysis of Lactobacillus ruminis from Different Niches. Genes. 11:1–17 (2020)

    Google Scholar 

  • Wang Y, Liang Q, Lu B, Shen H, Liu S, Shi Y, Leptihn S, Li H, Wei J, Liu Chengzhi, Xiao H, Zheng X, Liu Chao, Chen H. Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BMC Genomics. 22:1–12 (2021)

    Google Scholar 

  • Wu J, Zhang Y, Ye L, Wang C. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate Polymers. 253:117308 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Xing Z, Geng W, Li C, Sun Y, Wang Y. Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments. Scientific Reports. 7:1–12 (2017)

    Article  Google Scholar 

  • Xu S, Cheng J, Meng X, Xu Y, Mu Y. Complete genome and comparative genome analysis of Lactobacillus reuteri YSJL-12, a potential probiotics strain isolated from healthy sow fresh feces. Evolutionary Bioinformatics. 16:1–12 (2020)

    Article  Google Scholar 

  • Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, Zhang L. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Computational and Structural Biotechnology Journal. 19:6301–6314 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SJ, Kim KT, Kim TY, Paik HD. Probiotic properties and antioxidant activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in fermented black gamju. Foods. 9:1–12 (2020)

    Article  Google Scholar 

  • Yasuda E, Serata M, Sako T. Suppressive effect on activation of macrophages by Lactobacillus casei strain shirota genes determining the synthesis of cell wall-associated polysaccharides. Applied and Environmental Microbiology. 74:4746–4755 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. DbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research. 40:W445-W451 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo DA, Bagon BB, Valeriano VD V., Oh JK, Kim H, Cho S, Kang DK. Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity. FEMS microbiology letters. 364:1-10 (2017)

    Article  Google Scholar 

  • Zafar H, Saier MH. Comparative genomics of the transport proteins of ten Lactobacillus strains. Genes. 11:1–20 (2020)

    Article  Google Scholar 

  • Zago M, Scaltriti E, Bonvini B, Fornasari ME, Penna G, Massimiliano L, Carminati D, Rescigno M, Giraffa G. Genomic diversity and immunomodulatory activity of Lactobacillus plantarum isolated from dairy products. Beneficial Microbes. 8:597–604 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy. 67:2640–2644 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zuo F, Yu R, Zeng Z, Ma H, Chen S. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells. Scientific Reports. 5:1–12 (2015)

    Google Scholar 

  • Zhang M, Wang F, Jiang L, Liu R, Zhang L, Lei X, Li J, Jiang J, Guo H, Fang B, Zhao L, Ren F. Lactobacillus Salivarius Ren inhibits rat oral cancer induced by 4-nitroquioline 1-oxide. Cancer Prevention Research. 686–694 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhang L, Ross P, Zhao J, Zhang H, Chen W. Comparative genomics of Lactobacillus crispatus from the gut and vagina reveals genetic diversity and lifestyle adaptation. Genes. 11:1–14 (2020)

    Google Scholar 

  • Zhang W, Wang J, Zhang D, Liu H, Wang S, Wang Y, Ji H. Complete genome sequencing and comparative genome characterization of Lactobacillus johnsonii ZLJ010, a potential probiotic with health-promoting properties. Frontiers in Genetics. 10:1–13 (2019)

    Article  Google Scholar 

  • Zhang Z, Man C, Sun L, Yang X, Li M, Zhang W, Jiang Y. Short communication: Complete genome sequence of Lactobacillus plantarum J26, a probiotic strain with immunomodulatory activity. Journal of Dairy Science. 102:10838–10844 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun C, Zhao D, Zhang Y, You Y, Jia X, Yang J, Wang L, Wang J, Fu H, Kang Y, Chen F, Yu J, Wu J, Xiao J. PGAP-X: Extension on pan-genome analysis pipeline. BMC Genomics. 19 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. PGAP: Pan-genomes analysis pipeline. Bioinformatics. 28:416–418 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology. 70:2782–2858 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Zhao X, Lin XB, Gänzle M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Scientific Reports. 5:1–11 (2015)

    Article  Google Scholar 

  • Zhou X, Hong T, Yu Q, Nie S, Gong D, Xiong T, Xie M. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Scientific Reports. 1–13 (2017)

    Google Scholar 

  • Zhou X, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Comparative analysis of Lactobacillus gasseri from Chinese subjects reveals a new species-level taxa. BMC Genomics. 21:1–16 (2020)

    Article  CAS  Google Scholar 

  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A fast phage search tool. Nucleic Acids Research. 39:W347–W352 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant no. 321035052HD040). It was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1010406). Figure 1 was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license accessed at https://smart.servier.com/category/cellular-biology/nucleic-acids/ and Vecteezy accessed at https://www.vecteezy.com/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Kyung Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, R.M., Kim, S.H., Vasquez, R. et al. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 32, 389–412 (2023). https://doi.org/10.1007/s10068-022-01142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01142-8

Keywords

Navigation