Skip to main content

Metagenomics Bioinformatic Pipeline

  • Protocol
  • First Online:
Plant Comparative Genomics

Abstract

Microbial communities’ taxonomic and functional diversity has been broadly studied since sequencing technologies enabled faster and cheaper data obtainment. Nevertheless, the programming skills needed and the amount of software available may be overwhelming to someone trying to analyze these data. Here, we present a comprehensive and straightforward pipeline that takes shotgun metagenomics data through the needed steps to obtain valuable results. The raw data goes through a quality control process, metagenomic assembly, binning (the obtention of single genomes from a metagenome), taxonomic assignment, and taxonomic diversity analysis and visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy A, Salas Gonzalez I, Mittelviefhaus M et al (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50(1):138–150. https://doi.org/10.1038/s41588-017-0012-9

    Article  CAS  Google Scholar 

  2. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nurk S, Meleshko D, Korobeynikov A et al (2017) MetaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834. https://doi.org/10.1101/gr.213959.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu YW, Tang YH, Tringe SG et al (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2(1):26. https://doi.org/10.1186/2049-2618-2-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46

    Article  PubMed  PubMed Central  Google Scholar 

  8. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fadiji AE, Ayangbenro AS, Babalola OO (2020) Organic farming enhances the diversity and community structure of endophytic archaea and fungi in maize plant: a shotgun approach. J Soil Sci Plant Nutr 20(4):2587–2599. https://doi.org/10.1007/S42729-020-00324-9

    Article  CAS  Google Scholar 

  10. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  11. Weissman JL, Hou S, Fuhrman JA (2021) Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. PNAS 118(12):e2016810118. https://doi.org/10.1073/pnas.2016810118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilkins LGE, Ettinger CL, Jospin G et al (2019) Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia. Sci Rep 9(1):1–15. https://doi.org/10.1038/s41598-019-39576-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the learners, helpers, and instructors who gave feedback on the consolidation of this pipeline. To Ahmed Moustafa for his advice and support in the writing of this chapter. Finally, we thank the Mexican population, which supports the training of scientists within the country. The research reported in this publication was supported by CONACyT “MicroAgrobioma” grant 320237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Sélem-Mójica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garfias-Gallegos, D. et al. (2022). Metagenomics Bioinformatic Pipeline. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics