Skip to main content
Log in

Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium iron phosphate (LFP) has become a focal point of extensive research and observation, particularly as a cathode for lithium-ion batteries. It has extensive uses in electric vehicles, stationary power storage systems, and portable electronic devices. To further enhance the performance, one crucial area of focus is optimizing the cathode materials. This optimization involves improving key parameters such as conductivity, rate capability, and energy density. In this context, researchers have explored various cathode materials in combination with different conducting polymers, including poly(aniline), poly(thiophene), poly(pyrrole), poly(acetylene), and more. These conducting polymers are integrated into the cathode to boost the overall electrochemical behavior of LFP batteries. The objective is to assess how these electrochemical properties of conducting polymers influence the overall performance of LFP batteries. This research aims to provide a complete evaluation of conducting polymer-based cathode materials and to establish a solid foundation for selecting suitable polymers that support effectively as a cathode material. Such investigations are pivotal for advancing the development of these batteries with improved capabilities, ultimately leading to more efficient and reliable energy storage solutions intended for a varied choice of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Metals and Electronics, Statista Research Department (2023) Lithium-ion batteries - statistics & facts 2023

  2. Clare P, Grey S, David S (2020) Prospects for lithium-ion batteries and beyond—a 2030 vision. Hall Nat Commun 11:6279

    Article  Google Scholar 

  3. Kulova Tatiana L, Vladimir N, Fateev Ekaterina A, Seregina Alexander S, Grigoriev, (2020) A brief review of post-lithium-ion batteries. Int J Electrochem Sci 15(8):7242–7259. https://doi.org/10.20964/2020.08.22

    Article  CAS  Google Scholar 

  4. Benveniste G, Rallo H, Canals Casals A, Merino A, Amante B (2018) Comparison of the state of lithium-sulphur and lithium-ion batteries applied to electromobility. J Environ Manage 226:1–12. https://doi.org/10.1016/j.jenvman.2018.08

    Article  CAS  PubMed  Google Scholar 

  5. Shen C, Xie J, Zhang M, Andrei P, Hendrickson M, Plichta EJ, Zheng JP (2019) Self-discharge behavior of lithium-sulfur batteries at different electrolyte/sulfur ratios. J Electrochem Soc 166(3):A5287–A5294. https://doi.org/10.1149/2.0461903jes

    Article  CAS  Google Scholar 

  6. Marie JJ, Gifford S (2023) Developments in lithium-ion battery cathodes. Faraday Insights 18

  7. Hao SM, Liang S, Sewell CD, Li Z, Zhu C, Xu J, Lin Z (2021) Lithium-conducting branched polymers: new paradigm of solid-state electrolytes for batteries. Nano Lett 21(18):7435–7447. https://doi.org/10.1021/acs.nanolett.1c02558

    Article  CAS  PubMed  Google Scholar 

  8. Han S, Wen P, Wang H, Zhou Y, Gu Y, Zhang Lu, Shao-Horn Y, Lin X, Chen M (2023) Sequencing polymers to enable solid-state lithium batteries. Nat Mater 22:1515–1522

    Article  CAS  PubMed  Google Scholar 

  9. Fritsch M, Coeler M, Kunz K, Krause B, Marcinkowski P, Pötschke P, Wolter M, Michaelis A (2020) Lightweight polymer-carbon composite current collector for lithium-ion batteries. Batteries 6(4):60. https://doi.org/10.3390/batteries6040060

    Article  CAS  Google Scholar 

  10. Li L, Duan Y (2023) Engineering polymer-based porous membrane for sustainable lithium-ion battery separators. Polymers 15(18):3690. https://doi.org/10.3390/polym15183690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee S, Koo H, Kang HS, Oh KH, Nam KW (2023) Advances in polymer binder materials for lithium-ion battery electrodes and separators. Polymers 15(23):4477. https://doi.org/10.3390/polym15234477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balqis F, Eldona C, Laksono BT, Aini Q, Hamid FH, Wasisto HS, Sumboja A (2023) Conductive polymer frameworks in silicon anodes for advanced lithium-ion batteries. Appl Polym Mater 5(7):4933–4952. https://doi.org/10.1021/acsapm.3c00531

    Article  CAS  Google Scholar 

  13. Voropaeva D, Novikova S, Trofimenko N, Yaroslavtsev, (2022) A polystyrene-based single-ion conducting polymer electrolyte for lithium metal batteries. Processes 10(12):2509. https://doi.org/10.3390/pr10122509

    Article  CAS  Google Scholar 

  14. Tian L, Kim JW, Kim DW (2024) Solid hybrid electrolytes based on conductive oxides and polymer electrolytes for all-solid-lithium batteries. Mater Chem Front 8:455–484. https://doi.org/10.1039/D3QM00736G

    Article  CAS  Google Scholar 

  15. Du W, Du X, Ma M, Huang S, Sun X, Xiong L (2022). Polymer electrode materials for lithium-ion batteries. https://doi.org/10.1002/adfm.202110871

    Article  Google Scholar 

  16. Lee HW, Kim Y, Kim JE, Kim JY, Jang JY, Choi J, Kwak WJ (2023) Diluents effect on inhibiting dissolution of organic electrode for highly reversible Li-ion batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.202303033

    Article  Google Scholar 

  17. Amici J, Torchio C, Versaci D, Dessantis D, Marchisio A, Caldera F, Bella F, Francia C, Bodoardo S (2021) Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13:1625. https://doi.org/10.3390/polym13101625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manarin E, Corsini F, Trano S, Fagiolari L, Amici J, Francia C, Bodoardo S, Turri S, Griffini BF, G, (2022) Cardanol-derived epoxy resins as biobased gel polymer electrolytes for potassium-ion conduction. Polym Mater 4:3855–3865. https://doi.org/10.1021/acsapm.2c00335

    Article  CAS  Google Scholar 

  19. Trano S, Corsini F, Pascuzzi G, Giove E, Fagiolari L, Amici J, Francia C, Surri S, Bodoardo S, Griffini G, Bella F (2022) Lignin as polymer electrolyte precursor for stable and sustainable potassium batteries. Chemsuschem. https://doi.org/10.1002/cssc.202200294

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdah MAAM, Mokhtar M, Khoon L, T, Sopian K, Dzulkurnain N.A., Ahmad A, Sulaiman Y, Bella F, Su’ait M.S, (2021) Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Rep 7:8677–8687. https://doi.org/10.1016/j.egyr.2021.10.110

    Article  Google Scholar 

  21. Elizalde F, Amici J, Trano S, Vozzolo G, Guirresarobe R, Versaci D, Bodoardo S, Mecerreyes D, Sardon H, Bella F (2022) Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries. J Mater Chem A 10:12588. https://doi.org/10.1039/d2ta02239g

    Article  CAS  Google Scholar 

  22. Deng W, Shi W, Liu Q, Jiang J, Wang Q, Guo C (2020) Conductive nonconjugated radical polymer as high capacity organic cathode material for high-energy Li/Na ion batteries. J Power Sources 479:22879. https://doi.org/10.1016/j.jpowsour.2020.228796

    Article  CAS  Google Scholar 

  23. Preger Y, Barkholtz HM, Fresquez A, Campbell DL, Juba BW, Romàn-Kustas J, Ferreira SR, Chalamala B (2020) Degradation of Commercial lithium-ion cells as a function of chemistry and cycling conditions. Journal of Electrochemical Society 167:120532. https://doi.org/10.1149/1945-7111/abae37

    Article  CAS  Google Scholar 

  24. Sun T, Wang L, Ren D, Shi Z, Chen J, Zheng FYX, Han X, Lu L, Wang L, He X, Ouyang M (2023) Thermal runaway characteristics and modeling of LiFePO4 power battery for electric vehicles. Automotive Innovation 6:414–424. https://doi.org/10.1007/s42154-023-00226-3

    Article  Google Scholar 

  25. Porzio J, Scown CD (2021) Life-cycle assessment considerations for batteries and battery materials. Adv Energy Mater. https://doi.org/10.1002/aenm.202100771

    Article  Google Scholar 

  26. Madej W, Wojciechowski A (2021) Analysis of the charging and discharging process of LiFePO4 battery pack. Energies 14(13):4055. https://doi.org/10.3390/en14134055

    Article  CAS  Google Scholar 

  27. Kalkan O, Celen A, Bakirci K (2021) Experimental and numerical investigation of the LiFePO4 battery cooling by natural convection. J Energy Storage 40:102796. https://doi.org/10.1016/j.est.2021.102796

  28. Swierczynski M, Stroe DI, Stan AI, Teodorescu R, Knuds S (2014) Investigation on the self-discharge of the LiFePO4/C nanophosphate battery chemistry at different conditions. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). IEEE, Beijing, China. https://doi.org/10.1109/ITEC-AP.2014.6940762

  29. Suttisona S, Pengpatc K, Intathad U, Fane J, Zhang W, Eitssayeam S (2022) Preparation of LFP-based cathode materials for lithium-ion battery applications. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.05.302

  30. Hu J, Huang W, Yang L, Pan F (2020) Structure and performance of the LiFePO4 cathode material: from the bulk to the surface. Nanoscale 12:15036–15044. https://doi.org/10.1039/D0NR03776A

    Article  CAS  PubMed  Google Scholar 

  31. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  32. Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M (1999) Li/β-VOPO4: a new 4 V system for lithium batteries. J Electrochem Soc 146:4375. https://doi.org/10.1149/1.1392646

    Article  CAS  Google Scholar 

  33. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4 8 V electrode material for lithium batteries. Electrochem Solid State Lett 3:178. https://doi.org/10.1149/1.1390994

    Article  CAS  Google Scholar 

  34. Huang H, Yin S, Nazar L (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4A:170. https://doi.org/10.1149/1.1396695

    Article  Google Scholar 

  35. Yang S, Song Y, Zavalij P, Whittingham M (2002) Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun 4(3):239–244. https://doi.org/10.1016/S1388-2481(01)00298-3

    Article  CAS  Google Scholar 

  36. Chung S, Bloking J, Chiang Y (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  PubMed  Google Scholar 

  37. Malik R, Zhou F, Ceder G (2011) Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater 10:587–590

    Article  CAS  PubMed  Google Scholar 

  38. Yang XG, Liu T, Wang CY (2021) Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat Energy 6:176–185

    Article  CAS  Google Scholar 

  39. Chepurnaya I, Smirnova E, Karushev M (2022) Electrochemically active polymer components in next-generation LiFePO4 cathodes: can small things make a big difference? Batteries 8(10):185. https://doi.org/10.3390/batteries8100185

    Article  CAS  Google Scholar 

  40. Lin M, Chen Y, Chen B, Wu X, Kam K, Lu W, Chan HL, Yuan J (2014) Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries. ACS Appl Mater Inter 6:17556–17563. https://doi.org/10.1021/am503346e

    Article  CAS  Google Scholar 

  41. Zhou Y, Lu J, Deng C, Zhu H, Chen GZ, Zhang S, Tian X (2016) Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries. J Mater Chem A 4:12065–12072. https://doi.org/10.1039/C6TA03440C

    Article  CAS  Google Scholar 

  42. Zhang Q, Huang SZ, Jin J, Liu J, Li Y, Wang HE, Chen LH, Wang BJ, Su BL (2016) Sci Rep 6:25942–25954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shu H, Wang X, Wu Q, Liu L, Liang Q, Yang Z (2012) Electrochim Acta 76:120–129. https://doi.org/10.1016/j.electacta.2012.04.156

    Article  CAS  Google Scholar 

  44. Wang GX, Yang L, Chen Y, Wang JZ, Bewlay S, Liu HK (2005) An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim Acta 50(24):4649–4654. https://doi.org/10.1016/j.electacta.2005.02.026

    Article  CAS  Google Scholar 

  45. Li X, Luo D, Zhang X, Zhang Z (2015) Enhancement of electrochemical performances for LiFePO4/C with 3D-grape-bunch structure and selection of suitable equivalent circuit for fitting EIS results. J Power Sources 291:75–84. https://doi.org/10.1016/j.jpowsour.2015.05.018

    Article  CAS  Google Scholar 

  46. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  47. Kim WK, Ryu WH, Han DW, Lim SJ, Eom JY, Kwon HS (2014) ACS Appl Mater Inter 6(7):4731–4736. https://doi.org/10.1021/am405335k

    Article  CAS  Google Scholar 

  48. Xiao Z, Zhang Y, Hu G (2015) An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry. J Appl Electrochem 45:225–233. https://doi.org/10.1007/s10800-014-0780-1

    Article  CAS  Google Scholar 

  49. Haregewoin AM, Wotango AS, Hwang BJ (2016) Electrolyte additives for lithium-ion battery electrodes: progress and perspectives. Energy Environ Sci 9:1955–1988. https://doi.org/10.1039/C6EE00123H

    Article  CAS  Google Scholar 

  50. Huang YH, Goodenough JB (2008) High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater 20(23):7237–7241. https://doi.org/10.1021/cm8012304

    Article  CAS  Google Scholar 

  51. Shu H, Wang X, Wu Q, Hu B, Yang X, Wei Q, Liang Q, Bai Y, Zhou M, Wu C, Chen M, Wang A, Jiang L (2013) Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping. Electrochim Acta 89:479–487. https://doi.org/10.1016/j.electacta.2012.11.081

    Article  CAS  Google Scholar 

  52. Kavan L, Exnar I, Cech J, Graetzel M (2007) Enhancement of electrochemical activity of LiFePO4 (olivine) by amphiphilic ru-bipyridine complex anchored to a carbon nanotube. Chem Mater 19:4716–4721. https://doi.org/10.1021/cm071107p

    Article  CAS  Google Scholar 

  53. Yamada A, Yonemura M, Takei Y, Sonoyama N, Kanno R (2005) Fast charging LiFePO4. Electrochem Solid-State Lett 8A:55. https://doi.org/10.1149/1.1836117

    Article  CAS  Google Scholar 

  54. Liu Y, Mi C, Yuan C, Zhang X (2009) Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2. J Electroanal Chem 628:73–80. https://doi.org/10.1016/j.jelechem.2009.01.008

    Article  CAS  Google Scholar 

  55. Feng S, Shen W, Guo S (2017) Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron (II) phosphate. J of Solid-State Electrochem 21:3021–3028. https://doi.org/10.1007/s10008-017-3647-7

    Article  CAS  Google Scholar 

  56. Zhou N, Uchaker E, Wang HY, Zhang M, Liu SQ, Liu YN, Wu X, Cao G, Li H (2013) Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Adv 3:19366–19374. https://doi.org/10.1039/C3RA42855A

    Article  CAS  Google Scholar 

  57. Ni H, Liu J, Fan LZ (2013) Carbon-coated LiFePO4–porous carbon composites as cathode materials for lithium-ion batteries. NANO 5:2164–2168. https://doi.org/10.1039/C2NR33183G

    Article  CAS  Google Scholar 

  58. Ha SH, Lee YJ (2015) Core–shell LiFePO4/carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes. Nanoparticles 21:2132–2138. https://doi.org/10.1002/chem.201404952

    Article  CAS  Google Scholar 

  59. Chen S, Tang Q, Chen X, Tan L (2015) Nitrogen-doped carbon coated LiFePO4/carbon nanotube interconnected nanocomposites for high performance lithium-ion batteries. New J Chem 39:9782–9788. https://doi.org/10.1039/C5NJ02090E

    Article  CAS  Google Scholar 

  60. Ouyang C, Shi S, Wang Z, Huang X, Chen L (2019) A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl Sci 9(12):2483. https://doi.org/10.3390/app9122483

    Article  CAS  Google Scholar 

  61. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman, (2011) Calculations of Li-ion diffusion in olivine phosphates G. Chem Mater 23(17):4032–4037. https://doi.org/10.1021/cm201604g

    Article  CAS  Google Scholar 

  62. Rollo-Walker G, Malic N, Wang X, Forsyth CJ, M, (2021) Development and progression of polymer electrolytes for batteries: influence of structure and chemistry. Polymers 13(23):4127. https://doi.org/10.3390/polym13234127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang CY, Kuo TR, Yougbaré S, Lin LY (2022) Design of LiFePO4 and porous carbon composites with excellent high-rate charging performance for Lithium-Ion secondary battery. J Colloid Interface Sci 607:1457–1465. https://doi.org/10.1016/j.jcis.2021.09.118

    Article  CAS  PubMed  Google Scholar 

  64. Akhmetova K, Tatykayev B, Kalybekkyzy S, Sultanov F, Bakenov Z, Mentbayeva A (2023) One-step fabrication of all-in-one flexible nanofibrous lithium-ion battery. J Energy Storage 65:107237. https://doi.org/10.1016/j.est.2023.107237

  65. Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00275

    Article  PubMed  Google Scholar 

  66. Holtz R (2022) Conjugated molecules and polymers in secondary batteries: a perspective. Molecules 27(2):546. https://doi.org/10.3390/molecules27020546

  67. Percino MJ, Chapela VM (2013) Conducting Polymers. Handbook of Polymer Synthesis, Characterization, and Processing. Wiley Online Library Chapter 29. https://doi.org/10.1002/9781118480793.ch29

  68. Guo Y, Zhou Y, Xu Y (2021) Engineering polymers with metal-like thermal conductivity—present status and future perspectives. Polymer 233:124168. https://doi.org/10.1002/masy.19860010113

    Article  CAS  Google Scholar 

  69. Guo X, Facchetti A (2020) The journey of conducting polymers from discovery to application. Nat Mater 19:922–928

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Song R, Li L, Fu R, Liu Z, Li B (2022) High crystalline quality conductive polypyrrole film prepared by interface chemical oxidation polymerization method. Appl Sci 12(1):58. https://doi.org/10.3390/app12010058

    Article  CAS  Google Scholar 

  71. Martins JC, Neto J, Passos R, Pocrifka L (2020) Electrochemical behavior of polyaniline: a study by electrochemical impedance spectroscopy (EIS) in low-frequency. Solid State Ionics 346:115198. https://doi.org/10.1016/j.ssi.2019.115198

    Article  CAS  Google Scholar 

  72. Nederstedt H, Jannasch P (2020) Poly(p -phenylene)s tethered with oligo(ethylene oxide): synthesis by Yamamoto polymerization and properties as solid polymer electrolytes. Polym Chem 11:2418–2429. https://doi.org/10.1039/D0PY00115E

    Article  CAS  Google Scholar 

  73. Blume L, Sauter U, Jacob T (2019) Non-linear kinetics of the lithium-solid polymer electrolyte interface 318:551–559. https://doi.org/10.1016/j.electacta.2019.06.070

    Article  CAS  Google Scholar 

  74. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Metallic transport in polyaniline. Nature 441:65–68. https://doi.org/10.1038/nature04705

    Article  CAS  PubMed  Google Scholar 

  75. Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525. https://doi.org/10.1039/C6CS00555A

    Article  CAS  PubMed  Google Scholar 

  76. Ma D, Cao Z, Anming H (2014) Si-based anode materials for Li-ion batteries: a mini review nano-micro Let 6(4):347–358. https://doi.org/10.1007/s40820-014-0008-2

    Article  CAS  Google Scholar 

  77. Zhong XB, Wang HY, Yang ZZ, Jin B, Jiang QC (2015) Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J Power Sources 296:298–304. https://doi.org/10.1016/j.jpowsour.2015.07.047

    Article  CAS  Google Scholar 

  78. Zhou Z, Liu Y, Du C, Ren Y, Mu T, Zuo P, Yin G, Ma Y, Cheng X, Gao Y (2018) Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. J Power Sources 381:156–163. https://doi.org/10.1016/j.jpowsour.2018.02.009

    Article  CAS  Google Scholar 

  79. Wang Z, Cheng J, Ni W, Gao L, Yang D, Razal JM, Wang B (2017) Poly (3, 4-ethylene-dioxythiophene)-poly (styrenesulfonate) glued and graphene encapsulated sulfur-carbon film for high-performance free-standing lithium. J Power Sources 342:772–778. https://doi.org/10.1016/j.jpowsour.2017.01.001

    Article  CAS  Google Scholar 

  80. Zhao Y, Zhu W, Chen GZ, Cairns EJ (2016) Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J Power Sources 327:447–456. https://doi.org/10.1016/j.jpowsour.2016.07.082

    Article  CAS  Google Scholar 

  81. Moon S, Jung YH, Kim DK (2015) Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium–sulfur batteries. J Power Sources 294:386–392. https://doi.org/10.1016/j.jpowsour.2015.06.011

    Article  CAS  Google Scholar 

  82. Hong X, Zhang B, Murphy E, Zou J, Kim F (2017) Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance. J Power Sources 343:60–66. https://doi.org/10.1016/j.jpowsour.2017.01.034

    Article  CAS  Google Scholar 

  83. Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352:174–186. https://doi.org/10.1016/j.jpowsour.2017.03.128

    Article  CAS  Google Scholar 

  84. He X, Yang W, Mao X, Xu L, Zhou Y, Chen Y, Zhao Y, Yang Y, Xu J (2018) All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly (3, 4-ethylenedioxythiophene). J Power Sources 376:138–146. https://doi.org/10.1016/j.jpowsour.2017.09.084

    Article  CAS  Google Scholar 

  85. Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on polyaniline. Sens Actuators B 240:408–416. https://doi.org/10.1016/j.snb.2016.08.173

    Article  CAS  Google Scholar 

  86. Liu Q, Liu L, Xie K, Meng Y, Wu H, Wang G, Dai Z, Wei Z, Zhang Z (2015) Synergistic effect of Ar-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J Mater Chem A 3:8380–8388. https://doi.org/10.1039/C5TA00669D

    Article  CAS  Google Scholar 

  87. Luo Y, Guo R, Li T, Li F, Liu Z, Zheng M, Wang B, Yang Z, Luo H, Wan Y (2018) Application of polyaniline for Li-ion batteries, lithium–sulfur batteries, and supercapacitors. ChemSusChem(Minireviews) 12:1591–1611. https://doi.org/10.1002/cssc.201802186

  88. Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers (Basel) 9(4):150. https://doi.org/10.3390/polym9040150

    Article  CAS  PubMed  Google Scholar 

  89. Pradip K (2013). Doping in conjugated polymers. https://doi.org/10.1002/9781118816639

    Article  Google Scholar 

  90. Yoo DJ, Vinothkannan M (2021) Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers (Basel) 13(12):2003. https://doi.org/10.3390/polym13122003

    Article  CAS  Google Scholar 

  91. McCullough RD, Lowe RD, Jayaraman M, Anderson DL (1993) Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly (3-alkylthiophenes). J Org Chem 58:904–912. https://doi.org/10.1021/jo00056a024

    Article  CAS  Google Scholar 

  92. Wang J, Dai J, Yarlagadda T (2005) Carbon nanotube-conducting-polymer composite nanowires. Langmuir 21:9–12. https://doi.org/10.1021/la0475977

    Article  CAS  PubMed  Google Scholar 

  93. Lee BH, Lee JH, Kahng YH, Kim N, Kim YJ, Lee J, Lee T, Lee K (2014) Organic electronics: graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Adv Funct Mater 24:1960–1960. https://doi.org/10.1002/adfm.201470086

    Article  Google Scholar 

  94. Gupta S, McDonald B, Carrizosa SB, Price C (2016) Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: nanoscale morphology-promoted Synergistic effects. C Compos 92:175–192. https://doi.org/10.1016/j.compositesb.2016.02.049

    Article  CAS  Google Scholar 

  95. Gupta S, Price C, Heintzman E (2016) Conducting polymer nanostructures and nanocomposites with carbon nanotubes: hierarchical assembly by molecular electrochemistry. Growth Aspects and Property Characterization. J Nanosci Nanotechnol 16:374–391. https://doi.org/10.1166/jnn.2016.10721

    Article  CAS  PubMed  Google Scholar 

  96. Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9(4):150. https://doi.org/10.3390/polym9040150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cantwell WJ, Morton, (1991) The impact resistance of composite materials—a review. J Composites 22:347–362. https://doi.org/10.1016/0010-4361(91)90549-V

    Article  CAS  Google Scholar 

  98. Singh SK, Shukla RK, Dixit CK (2015) Polyacetylene: a thorough analysis of synthesis and applications of conducting polymer. J Appl Phys 7(3):82–85. https://doi.org/10.9790/4861-0703018285

    Article  CAS  Google Scholar 

  99. Ghosh S, Majumdar D (2021) Chemical synthesis of conducting polymers nanostructures. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications 43–83. https://doi.org/10.1002/9783527820115.ch2

  100. Tang Q, Wu J, Sun X, Li Q, Lin J (2009) Shape and size control of oriented polyaniline microstructure by a self-assembly method. Langmuir 25(9):5253–5257. https://doi.org/10.1021/la8038544

    Article  CAS  PubMed  Google Scholar 

  101. Yuan X, Remita H (2022) Conjugated polymer polypyrrole nanostructures: synthesis and photocatalytic applications. Top Curr Chem 380:32. https://doi.org/10.1007/s41061-022-00388-4

    Article  CAS  Google Scholar 

  102. Park CS, Kim DH, Shin BJ, Kim DY, Lee HK, Tae HS (2016) Conductive polymer synthesis with single-crystallinity via a novel plasma polymerization technique for gas sensor applications. Materials 9(10):812. https://doi.org/10.3390/ma9100812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vandesteeg N (2007) Synthesis and characterization of conducting polymer actuators. Mater Sci Eng 349–356. http://hdl.handle.net/1721.1/38514. Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering at the Massachusetts Institute of Technology.

  104. Namsheer K, Rout C (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11:5659. https://doi.org/10.1039/d0ra07800j

    Article  CAS  Google Scholar 

  105. Marsh G (2001) Electronic polymers revolution Mater Today 4:4–6. https://doi.org/10.1016/S1369-7021(01)80178-4

    Article  Google Scholar 

  106. Tang H, Liang Y, Liu C, Hu Z, Deng Y, Guo H, Yu Z, Song A, Zhao H, Zhao D, Zhang Y, Guo X, Pei J, Ma Y, Cao Y, Huang F (2022) A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611:271–277

    Article  CAS  PubMed  Google Scholar 

  107. Hakansson E, Lin T, Wang H, Kaynak A (2006) The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synth Met 156:1194–1202. https://doi.org/10.1016/j.synthmet.2006.08.006

    Article  CAS  Google Scholar 

  108. Beygisangchin M, Rashid S, Shafie S, Sadrolhosseini A, Lim H (2021) Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers 13(12):2003. https://doi.org/10.3390/polym13122003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang Y, Levon K (2012) Influence of dopant on electroactivity of polyaniline. Macromol Symp 317–318:240–247. https://doi.org/10.1002/masy.201200008

    Article  CAS  Google Scholar 

  110. Utkarsh D, Chavan P, Prajith, Kandasubramanian B (2022) Polypyrrole based cathode material for battery application. Chem Eng J Adv 12:100416. https://doi.org/10.1016/j.ceja.2022.100416

  111. Palania P, Karpagam S (2021) Conjugated polymers – a versatile platform for various photophysical, electrochemical and biomedical applications: a comprehensive review. New J Chem 45:19182–19209. https://doi.org/10.1039/D1NJ04062F

    Article  Google Scholar 

  112. Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS (2017) Polythiophene: from fundamental perspectives to applications. Chem Mater 29(24):10248–10283. https://doi.org/10.1021/acs.chemmater.7b03035

    Article  CAS  Google Scholar 

  113. Wanga H, Emanuelssona R, Liub H, Mamedov F, Strømme M, Sjödina M (2021) A conducting additive-free high potential quinone-based conducting redox polymer as lithium ion battery cathode. Electrochim Acta 391:138901. https://doi.org/10.1016/j.electacta.2021.138901

    Article  CAS  Google Scholar 

  114. Zhang X, Xu Q, Wang S, Tang Y (2021) Huang X (2021) One-step synthesis of a polymer cathode material containing phenoxazine with high performance for lithium-ion batteries. ACS Appl Energy Mater 4(10):11787–11792. https://doi.org/10.1021/acsaem.1c02556

    Article  CAS  Google Scholar 

  115. Hyein K, Minsung K, Yeong H, Jinhan C, Sang SL, Jong HP, Jeong GS (2022) Plasma-assisted mechanochemistry to covalently bond ion-conducting polymers to Ni-rich cathode materials for improved cyclic stability and rate capability. Appl Energy Mater. https://doi.org/10.1021/acsaem.2c00244

    Article  Google Scholar 

  116. Qingmeng G, Ning Q, Youhuan Z, Zixuan H, Fangchang Z, Shuai G, Jiwei X, Kaili Z, Li L, Zhouguang L (2019) Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl Mater Interfaces 11(13):12594–12604. https://doi.org/10.1021/acsami.9b04050

    Article  CAS  Google Scholar 

  117. Dasa PR, Komsiyskaa L, Ostersa O, Wittstock G (2016) Effect of solid loading on the processing and behavior of PEDOT: PSS binder based composite cathodes for lithium ion batteries. Synth Met 215:86–94. https://doi.org/10.1016/j.synthmet.2016.02.011

    Article  CAS  Google Scholar 

  118. Zhao Y, Ni M, Xu N, Li C, Ma Y, Zhang H, Chen Y (2023) High-performance lithium-ion batteries based on polymer/graphene hybrid cathode material. China Chem 66:2683–2689. https://doi.org/10.1007/s11426-023-1681-x

    Article  CAS  Google Scholar 

  119. Nguyen VA, Kuss C (2020) Conducting polymer-based binders for lithium-ion batteries and beyond. J Electrochem Soc 167:065501. https://doi.org/10.1149/1945-7111/ab856b

    Article  CAS  Google Scholar 

  120. Wu F, Liu J, Li L, Zhang X, Luo R, Ye Y, Chen R (2016) Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer. Appl Mater Interfaces 8(35):23095–23104. https://doi.org/10.1021/acsami.6b07431

    Article  CAS  Google Scholar 

  121. Xu L, Xin H, Su C (2022) Effect of cross-linking on electrochemical performances of polyaniline as the cathode material of lithium-ion batteries. Polym Bull 79:5261–5278. https://doi.org/10.1007/s00289-021-03747-1

    Article  CAS  Google Scholar 

  122. Chen WM, Huang YH, Yuan LX (2011) Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries. J ElectroanalChem 660:108–113. https://doi.org/10.1016/j.jelechem.2011.06.013

    Article  CAS  Google Scholar 

  123. Suguro M, Iwasa S, Nakahara K (2008) Fabrication of a practical and polymer-rich organic radical polymer electrode and its rate dependence. Macromol Rapid Commun 29:1635–1639. https://doi.org/10.1002/marc.200800406

    Article  CAS  Google Scholar 

  124. Zhu L, Zhang Y, Zhao X, Jiao Y, Zhao Z, Wang Y, Yang N (2021) Polypyrrole/Al2O3/LiMn2O4 cathode for enhanced storage of Li ions. Electrochem Commun 124:106951. https://doi.org/10.1016/J.ELECOM.2021.106951

    Article  CAS  Google Scholar 

  125. Silva AS, D e Souza SM, Sanches EA, (2018) Polypyrrole@α-Al2O3 and polypyrrole@CeO2 core-shell hybrid nanocomposites. J Compos 52:11. https://doi.org/10.1177/0021998317725908

    Article  CAS  Google Scholar 

  126. Zhang X, Xu Q, Wang S, Tang Y, Huang X (2021) One-step synthesis of a polymer cathode material containing phenoxazine with high performance for lithium-ion batteries. Appl Energy Mater 4(10):11787–11792. https://doi.org/10.1021/acsaem.1c02556

    Article  CAS  Google Scholar 

  127. Liu L, Tian F, Wanga X, Yang Z, Zhou M, Wang X (2012) Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability. React Funct Polym 72:45–49. https://doi.org/10.1016/j.reactfunctpolym.2011.10.006

    Article  CAS  Google Scholar 

  128. Yina X, Li Y, Feng Y, Feng W (2016) Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries. Synth Met 220:560–566. https://doi.org/10.1016/j.synthmet.2016.07.032

    Article  CAS  Google Scholar 

  129. Lei S, Dong Y, Dou Y, Zhang X, Zhang Q, Yang Y (2021) Polymerization-tailored polyimides as cathodes for lithium-ion batteries. Mater Adv 2:5785–5790. https://doi.org/10.1039/D1MA00554E

    Article  CAS  Google Scholar 

  130. Zhu LM, Niu YJ, Cao YL, Lei AW, Ai XP, Yang HX (2012) n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials. Electrochim Acta 78:27–31. https://doi.org/10.1016/j.electacta.2012.05.152

    Article  CAS  Google Scholar 

  131. Xu N, Mei S, Chen Z, Dong Y, Li W, Zhang C (2020) High-performance Li-organic battery based on thiophene-containing porous organic polymers with different morphology and surface area as the anode materials. Chem Eng J 395:124975. https://doi.org/10.1016/j.cej.2020.124975

    Article  CAS  Google Scholar 

  132. Zhang C, Yang X, Ren WF, Wang YH, Su FB, Jiang JX (2016) Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density. J Power Sources 317:49–56. https://doi.org/10.1016/j.jpowsour.2016.03.080

    Article  CAS  Google Scholar 

  133. Moritomo Y, Sugano T, Fukuzumi Y, Iwaizumi H, Yasuda T (2019) Rapid discharge process of polythiophene cast film as cathode material. J Electroanal Chem 839:210–213. https://doi.org/10.1016/j.jelechem.2019.03.054

    Article  CAS  Google Scholar 

  134. Lyu H, Liu J, Mahurin S, Daib S, Guo Z, Sun XG (2017) Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium-ion batteries. Mater Chem A 5:24083–24090. https://doi.org/10.1039/C7TA07893E

    Article  CAS  Google Scholar 

  135. Zhang Y, Zhang Z, Jia J, Yin M, He Z, Yu H, Zeng Q, Wang D, Liu X (2023) Cyclen-linked benzoquinone based carbonyl network polymer for high-performance lithium organic battery. Eur Polym J 932:117251. https://doi.org/10.1016/j.jelechem.2023.117251

    Article  CAS  Google Scholar 

  136. Wu F, Chen J, Chen R, Wu S, Li L, Chen D, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115(13):6057–6063. https://doi.org/10.1021/jp1114724

    Article  CAS  Google Scholar 

  137. Cao Y, Qi X, Hu K, Wang Y, Gan Z, Li Y, Hu G, Peng Z, Du K (2018) Conductive polymers encapsulation to enhance electrochemical performance of Ni-Rich cathode materials for Li-ion batteries. Appl Mater Interfaces 10:18270–18280. https://doi.org/10.1021/acsami.8b02396

    Article  CAS  Google Scholar 

  138. Wang A, Yuan K, Chen S, Yang Y (2013) A novel polyquinone cathode material for rechargeable lithium batteries. J Power Sources 233:23–27. https://doi.org/10.1016/j.jpowsour.2013.01.103

    Article  CAS  Google Scholar 

  139. Qie L, Yuan LX, Zhang WX, Chen WM, Huangz YH (2012) Revisit of polypyrrole as cathode material for lithium-ion battery. J Electrochem Soc 159:A1624. https://doi.org/10.1149/2.042210jes

    Article  CAS  Google Scholar 

  140. Gao XW, Deng YF, Wexler D, Chen G, Chou SL, Liu HK, Shi ZC, Wang JZ (2015) Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J Mater Chem 3(1):404–411. https://doi.org/10.1039/C4TA04018J

    Article  CAS  Google Scholar 

  141. Zou MC, Wang YY, Han MC, Wei F (2022) Zn2TiO4 spheres coated with polypyrrole as high-performance negative for Li-ion batteries. Ionics 28:4611–4620. https://doi.org/10.1007/s11581-022-04705-1

    Article  CAS  Google Scholar 

  142. Vinay G, Fahad A, Pawan V, Kannan AM, Kumar S (2021) Additive manufacturing enabled, microarchitected, hierarchically porous polylactic-acid/lithium iron phosphate/carbon nanotube nanocomposite electrodes for high performance Li-Ion batteries. J Power Sources 494:229625. https://doi.org/10.1016/j.jpowsour.2021.229625

    Article  CAS  Google Scholar 

  143. Ye S, Xingyi Z, Jun Z, Andrea MB, Andrew CB, Amy CM, Kenneth JT, Esther ST, Guihua Y (2017) Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in Li-ion batteries. Nano Lett 17(3):1906–1914. https://doi.org/10.1021/acs.nanolett.6b05227

    Article  CAS  Google Scholar 

  144. Wang J, Chen CS, Zhan Y (2018) Hexaazatrinaphthylene-based porous organic polymers as organic cathode materials for lithium-ion batteries. Sustainable Chem Eng 6(2):1772–1779. https://doi.org/10.1021/acssuschemeng.7b03165

    Article  CAS  Google Scholar 

  145. Cankun G, Xiaoling C, Caiyun W, Mengya W, Shumin W, Yin Q, Wang P, Zhao D, Li S (2023) 3D printed hierarchical porous and multidimensional conductive network based on conducting polymer/graphene oxide. J Materiomics. https://doi.org/10.1016/j.jmat.2023.05.012

    Article  Google Scholar 

  146. Raj H, Sil A (2019) PEDOT:PSS coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance. J Mater Sci 30:13604–13616. https://doi.org/10.1007/s10854-019-01730-1

    Article  CAS  Google Scholar 

  147. Avci E, Mazman M, Uzun D, Biçer E, Tansel S (2013) High performance LiFePO4/CN cathode material promoted by polyaniline as carbon–nitrogen precursor. J Power Source 240:328–337. https://doi.org/10.1016/j.jpowsour.2013.04.030

    Article  CAS  Google Scholar 

  148. Gong C, Deng F, Tsui CP, Xue Z, Sheng Y, Tang CY, Zhoua X, Xie X (2014) PANI-PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries. J Mater Chem A 2:19315–19323. https://doi.org/10.1039/c4ta04089a

    Article  CAS  Google Scholar 

  149. Gao Y, Xiong K, Xu H, Zhu B (2019) Enhanced high-rate and low-temperature electrochemical properties of LiFePO4/polypyrrole cathode materials for lithium-ion batteries. Int J Electrochem Sci 14:3408–3417. https://doi.org/10.20964/2019.04.01

    Article  CAS  Google Scholar 

  150. Fischer MG, Hua X, Wilts BD, Martínez EC, Steiner U (2018) Polymer-templated LiFePO4/C nanonetworks as high-performance cathode materials for lithium-ion batteries. Appl Mater Interfaces 10:1646–1653. https://doi.org/10.1021/acsami.7b12376

    Article  CAS  Google Scholar 

  151. Dinh HC, Mho SI, Yeo IH (2011) Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology. Electroanalysis 23:2079–2086. https://doi.org/10.1002/elan.201100222

    Article  CAS  Google Scholar 

  152. Levin OV, Eliseeva SN, Alekseeva EV, Tolstopjatova EG, Kondratiev VV (2015) Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries. Int J Electrochem Sci 88:1146–1149. https://doi.org/10.1134/S1070427215070071

    Article  CAS  Google Scholar 

  153. Chen WM, Huang YH, Yuan LX (2011) Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries. J Electroanal Chem 660:108–113. https://doi.org/10.1016/j.jelechem.2011.06.013

    Article  CAS  Google Scholar 

  154. Kim JK, Manuel J, Lee MH, Scheers J, Lim DH, Johansson P, Ahn JH, Matica A, Jacobsson P (2012) Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes. J Mater Chem 22:15045–15049. https://doi.org/10.1039/C2JM30965C

    Article  CAS  Google Scholar 

  155. John J, Manoj M, AnilKumar KM, Pradeeep VS, Jayalekshmi S (2018) Lithium-enriched polypyrrole as a prospective cathode material for Li-ion cells. Ionics 24:2565–2574. https://doi.org/10.1007/s11581-017-2398-x

    Article  CAS  Google Scholar 

  156. Bai YM, Qiu P, Wen ZI, Han SC (2010) Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. J Alloys Compd 508:1–4. https://doi.org/10.1016/j.jallcom.2010.05.173

    Article  CAS  Google Scholar 

  157. Tolganbek N, Zhalgas N, Kadyrov Y, Umirov N, Bakenov Z, Mentbayeva A (2023) Facile deposition of the LiFePO4 cathode by the electrophoresis method. Omega 8(8):8045–8051. https://doi.org/10.1021/acsomega.2c07937

    Article  CAS  Google Scholar 

  158. Eliseeva SN, Apraksin RV, Tolstopjatova EG, Kondratiev VV (2017) Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene/polystyrene sulfonate. Electrochim Acta 227:357–366. https://doi.org/10.1016/j.electacta.2016.12.157

    Article  CAS  Google Scholar 

  159. Han JJ, Guo AR, Wang YF (2022) Synthesis of PANI and its application in LiFePO4 cathode material. Ionics 28:1073–1080. https://doi.org/10.1007/s11581-021-04414-1

    Article  CAS  Google Scholar 

  160. Feng S, Shen W, Guo S (2017) Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron (II) phosphate. J Solid State Electrochem 21:3021–3028. https://doi.org/10.1007/s10008-017-3647-7

    Article  CAS  Google Scholar 

  161. Puthirath AB, John B, Gouri C, Jayalekshmi S (2015) Lithium doped polyaniline and its composites with LiFePO4 and LiMn2O4-prospective cathode active materials for environment friendly and flexible Li-ion battery. RSC Adv 5:69220–69228. https://doi.org/10.1039/C5RA10706G

    Article  CAS  Google Scholar 

  162. Gao XW, Deng YF, Wexler D, Chen G, Chou SL, Liu HK, Shi ZC, Wang JZ (2015) Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J Mater Chem 3(1):404–411. https://doi.org/10.1039/C4TA04018J

    Article  CAS  Google Scholar 

  163. Wang Y, Huang HYS (2011) An overview of lithium-ion battery cathode materials. Mater Res Soc Symp Proc 1363. https://doi.org/10.1557/opl.2011.1363

  164. Saldaña G, Martín JIS, Zamora I, Asensio FJ, Onederra O (2019) Analysis of the current electric battery models for electric vehicle simulation. Energies 12:2750. https://doi.org/10.3390/en12142750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges Anna Centenary Research Fellowship (ACRF), supported by Anna University and Rashtriya Uchchatar Shiksha Abhiyan (RUSA).

Funding

Anna Centenary Research Fellowship, CFR/ACRF-2021/AR1, Lucia Rathinasamy, RUSA, PO-13, Balasubramanian Natesan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Natesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinasamy, L., Natesan, B. Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05858-x

Keywords

Navigation