Skip to main content
Log in

Zn2TiO4 spheres coated with polypyrrole as high-performance negative for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, polypyrrole-coated Zn2TiO4 (Zn2TiO4@PPy) composites were constructed through solvothermal route and a facile ice-water bath strategy, and the PPy coating layer possessing preeminent electrical conductivity could enhance the electronic conductivity of pristine Zn2TiO4 and further elevate the whole electrochemical performance of composites as negative materials for Li-ion batteries. All samples possessed the similar spherical morphologies with diameter from 150 to 200 nm and the introduction of PPy layer rendered the surface of the Zn2TiO4 rough but did not affect the crystal structure of Zn2TiO4. Additionally, the as-prepared Zn2TiO4@PPy composites display higher specific capacities than that of pristine Zn2TiO4. Among them, the Zn2TiO4@PPy (3.7wt%) sample can deliver delithiation/lithiation capacities of 297.5 (330.7), 248.4 (256.1), 235.0 (242.2), 211.7 (214.9), 197.0 (199.0), 184.8 (185.5), and 159.6 (160.9) mAh g−1 cycled at 50, 100, 200, 300, 400, 500, and 1000 mA g−1, respectively. The research results testified that the decoration with appropriate high conductive PPy coating layer could largely promote the electrochemical properties of Zn2TiO4 as negative for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang XQ, Zhao CZ, Huang JQ, Zhang Q (2018) Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 4:831–847

    Article  CAS  Google Scholar 

  2. Tian YS, Zeng GB, Rutt A, Shi T, Kim H, Wang JY, Koettgen J, Sun YZ, Ouyang B, Chen TN, Lun ZY, Rong ZQ, Persson K, Ceder G (2021) Promises and challenges of next-generation “Beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Sci 121:1623–1669

    CAS  Google Scholar 

  3. Balogun MS, Qiu WT, Luo Y, Meng H, Mai WJ, Onasanya A, Olaniyi Titus K, Tong YX (2016) A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res 9:2823–2851

    Article  CAS  Google Scholar 

  4. Cheng H, Shapter JG, Li YY, Gao G (2021) Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem 57:451–468

    Article  Google Scholar 

  5. Yang YJ, Wu SX, Zhang YP, Liu CB, Wei XJ, Luo D, Lin Z (2021) Towards efficient binders for silicon based lithium-ion battery anodes. Chem Eng J 406:126807

    Article  CAS  Google Scholar 

  6. Xin FX, Whittingham MS (2020) Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries. Electrochem Energy Rev 3:643–655

    Article  CAS  Google Scholar 

  7. Wang ST, Yang Y, Dong YH, Zhang ZT, Tang ZL (2019) Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J Adv Ceram 8:1–18

    Article  Google Scholar 

  8. Liu Y, Li W, Xia YY (2021) Recent progress in polyanionic anode materials for Li (Na)-ion batteries. Electrochem Energy Rev 4:447–472

    Article  CAS  Google Scholar 

  9. Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3:5750–5777

    Article  CAS  Google Scholar 

  10. Deng ZP, Xu ZX, Deng WJ, Wang XL (2022) Ultrafine Li4Ti5O12 nanocrystals as building blocks for ultrahigh-power lithium-ion battery anodes. J Power Sources 521:230970

    Article  CAS  Google Scholar 

  11. Liao WM, Tian JH, Shan ZQ, Na R, Cui L, Lin HZ (2016) Facile synthesis of Zn2Ti3O8 hollow spheres based on ion exchange as promising anodes for lithium ion batteries. Electrochim Acta 216:94–101

    Article  CAS  Google Scholar 

  12. Han MC, Zhang JH, Cui P, Yi TF, Li XF (2020) Porous ZnTiO3 rods as a novel lithium storage material for Li-ion batteries. Ceram Int 46:14030–14037

    Article  CAS  Google Scholar 

  13. Hong ZS, Wei MD, Deng QX, Ding XK, Jiang LL, Wei KM (2010) A new anode material made of Zn2Ti3O8 nanowires: synthesis and electrochemical properties. ChemComm 46:740–742

    CAS  Google Scholar 

  14. Qu Y, Zhou W, Ren ZY, Wang GF, Jiang BJ, Fu HG (2014) Facile synthesis of porous Zn2Ti3O8 nanorods for photocatalytic overall water splitting. ChemCatChem 6:2258–2262

    Article  CAS  Google Scholar 

  15. Li JS, Cui HT, Mu DY, Liu YL, Guan TY, Xia Z, Jiang LM, Zuo JL, Tan C, You H (2019) Synthesis and characterization of rGO decorated cubic ZnTiO3 rods for solar light-induced photodegradation of rhodamine B. New J Chem 43:3374–3382

    Article  CAS  Google Scholar 

  16. Manchala S, Nagappagari LR, Venkatakrishnan SM, Shanker V (2018) Facile synthesis of noble-metal free polygonal Zn2TiO4 nanostructures for highly efficient photocatalytic hydrogen evolution under solar light irradiation. Int J Hydrog Energy 43:13145–13157

    Article  CAS  Google Scholar 

  17. Liao WM, Li WF, Tian JH, Xiao QB, Dai MM, Xu GG, Li YF, Lin HZ (2019) Solvothermal ion exchange synthesis of ternary cubic phase Zn2Ti3O8 solid spheres as superior anodes for lithium ion batteries. Electrochim Acta 302:363–372

    Article  CAS  Google Scholar 

  18. Han MC, Zhang JH, Cui P, Zhu YR, Yi TF (2020) Construction of spherical ZnTiO3/MWCNTs composites as anode material for high-performance Li-ion batteries. Sustainable Mater Technol 25:e00207

    Article  CAS  Google Scholar 

  19. Han MC, Zhu LL, Jiao SY, Yi TF, Cui P, Shi Y (2021) Controllable synthesis and electrochemical research of Zn2TiO4 spheres as new anode materials for lithium ion batteries. Adv Sustain Syst 5:2100149

    Article  CAS  Google Scholar 

  20. Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  21. Yuan T, Tan ZP, Ma CR, Yang JH, Ma ZF, Zheng SY (2017) Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv Energy Mater 7:1601625

    Article  Google Scholar 

  22. Peng PP, Wu YR, Li XZ, Zhang JH, Li YW, Cui P, Yi TF (2021) Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare Met 40:3049–3075

    Article  CAS  Google Scholar 

  23. Yi TF, Mei J, Zhu YR, Fang ZK (2015) Li5Cr7Ti6O25 as a novel negative electrode material for lithium-ion batteries. ChemComm 51:14050–14053

    CAS  Google Scholar 

  24. Wang L, Wu LJ, Li ZH, Lei GT, Xiao QZ, Zhang P (2011) Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anodematerial for lithium-ion batteries. Electrochim Acta 56:5343–5346

    Article  CAS  Google Scholar 

  25. Fan SS, Zhong H, Yu HT, Lou M, Xie Y, Zhu YR (2017) Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Sci China Mater 60:427–437

    Article  CAS  Google Scholar 

  26. Yi TF, Mei J, Peng PP, Luo SH (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos B 167:566–572

    Article  CAS  Google Scholar 

  27. DaiZX KHZ, Long ZW, Li RR, Shi C, Su XL, Qiao H, Wang KL, Liu K (2021) Facile synthesis and high lithium storage properties of mesoporous polypyrrole coated CoFe2O4 nanofibers. J Alloys Compd 858:158324

    Article  Google Scholar 

  28. Blidberg A, Valvoa M, Alfredsson M, Tengstedt C, Gustafsson T, Björefors F (2019) Electronic changes in poly(3,4-ethylenedioxythiophene)-coated LiFeSO4F during electrochemical lithium extraction. J Power Sources 418:84–89

    Article  CAS  Google Scholar 

  29. Gu HD, Chen F, Liu CB, Qian JC, Ni M, Liu TT (2017) Scalable fabrication of core-shell structured Li4Ti5O12/PPy particles embedded in N-doped graphene networks as advanced anode for lithium-ion batteries. J Power Sources 369:42–49

    Article  CAS  Google Scholar 

  30. Liu Q, Luo Y, Chen WL, Yan YW, Xue LH, Zhang WX (2018) CoP3@PPy microcubes as anode for lithium-ion batteries with improved cycling and rate performance. Chem Eng J 347:455–461

    Article  CAS  Google Scholar 

  31. Wang Y, Cao LY, Lia JY, Kou LJ, Huang JF, Feng YQ, Chen SY (2020) Cu/Cu2O@PPy nanowires as a long-life and high-capacity anode for lithium ion battery. Chem Eng J 391:123597

    Article  CAS  Google Scholar 

  32. Jiang LX, Dong CW, Jin B, Wen Z, Jiang Q (2019) ZnFe2O4@PPy core-shell structure for high-rate lithium-ion storage. J Electroanal Chem 851:113442

    Article  CAS  Google Scholar 

  33. Siriwong C, Phanichphant S (2011) Flame-made single phase Zn2TiO4 nanoparticles. Mater Lett 65:2007–2009

    Article  CAS  Google Scholar 

  34. Jiang L, Yin WH, He CJ, Luo TT, Rui YC, Tang BHJ (2022) Sb2O4 @PPy core-shell nanospheres as anode materials for lithium-ion storage. Colloids Surf A 644:128843

    Article  CAS  Google Scholar 

  35. Liu RQ, Li DY, Wang C, Li N, Li Q, Lü XJ, Spendelow JS, Wu G (2014) Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 6:73–81

    Article  CAS  Google Scholar 

  36. Wang FF, Zhang N, Lv ZC, Zhu YR, Zhang JH, Yi TF (2022) PPy-encapsulated Na2Li2Ti6O14 composites as high-performance anodes for Li-ion battery. Acta Metall Sin (Engl Lett). https://doi.org/10.1007/s40195-022-01418-2

    Article  Google Scholar 

  37. Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965

    Article  CAS  Google Scholar 

  38. Wang HB, Pan QM, Cheng YX, Zhao JW, Yin GP (2009) Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim Acta 54:2851–2855

    Article  CAS  Google Scholar 

  39. Zhang B, Liu YS, Huang ZD, Oh S, Yu Y, Mai YW, Kim JK (2012) Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batterie. J Mater Chem 22:12133–12140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-cheng Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Mc., Wang, Yy., Han, Mc. et al. Zn2TiO4 spheres coated with polypyrrole as high-performance negative for Li-ion batteries. Ionics 28, 4611–4620 (2022). https://doi.org/10.1007/s11581-022-04705-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04705-1

Keywords

Navigation