Skip to main content
Log in

Conjugated Polymer Polypyrrole Nanostructures: Synthesis and Photocatalytic Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Conjugated polymers (CPs) have been recently widely investigated for their properties and their applications in different fields including photocatalysis. Among the family of CPs, polypyrrole (PPy) has been the most extensively studied owing to its good environmental stability, high electrical conductivity, superior redox properties and easy synthesis. Besides, nanostructured polypyrrole-based nanomaterials are a type of active organic materials for photocatalysis, which is one of their emerging applications. Nanostructuration of polypyrrole can reduce the electron-hole recombination because of short charge transfer distances and reactant adsorption, and product desorption can be enhanced owing to the high surface area offered by nanostructures. This review summarizes synthesis of different nanostructures based on π-conjugated polymer polypyrrole and the latest developments for photocatalytic applications, including degradation of organic pollutants and hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 9

Reproduced from Ref. [68] with permission from the Royal Society of Chemistry. d SEM image of constructed PPy nanowire electrode (PNW) surface. e SEM image of AMP immobilized PPy nanowire electrode (PNW-AMP) surface. Insets in d, e were high magnification images [75]. Copyright 2019 Wiley-VCH. f High-magnification SEM image of polypyrrole nanotubes [76]. Copyright 2011, American Chemical Society.

Fig. 10

Copyright 2018 Wiley-VCH. SEM images of PPy microcontainers and microspheres synthesized by electrochemical polymerizations. b Microcontainers doped with camphorsulfonic acid [78]; c microcontainers doped with poly (styrenesulfonic acid). Copyright 2003, American Chemical Society. (d) Microcontainers doped with camphorsulfonic acid and prepared by the CV technique [79]. Copyright 2004, Elsevier. e Arranged microcontainers on patterned electrodes; f microspheres doped with naphthalene sulfonic acid [80]. Copyright 2004 Wiley. g Microcontainers prepared by electrochemical growth of PPy on layer-by-layer (LBL) film-modified electrode [82]. Copyright 2006, Elsevier

Fig. 12

Copyright 2019, Elsevier. Cryo-TEM images of radio-synthesized PPy (γ-PPy) at 72 kGy. c Nanostructures of γ-PPy; d full view of chaplets of γ-PPy [39]. Copyright 2014, American Chemical Society. TEM images of the products prepared from γ-ray radiation on an acidic aqueous solution of Py at different pH: e pH 1; f pH 0.8 [96]. Copyright 2017 Wiley-VCH

Fig. 13

Copyright 2005, Elsevier

Fig. 14

Copyright 2019 Elsevier

Fig. 15
Fig. 16

Copyright 2020, Elsevier

Fig. 17
Fig. 18
Fig. 19

Copyright 2013, American Chemical Society. c Photodegradation of MO with different samples under simulated solar power for 180 min; d UV–Vis adsorption spectra showing photo degradation of MO with TiO2−PDA/PPy/cotton under 1 kW m−2 illumination; e pictures showing the color change of the MO solution containing TiO2–PDA/PPy/cotton [130]. Copyright 2018, American Chemical Society

Fig. 20

Reproduced from Ref. [94] with permission from the Royal Society of Chemistry. c Comparative data of H2 generation rate after 60-min visible light illumination for bare PPy and PPy based nanohybrids. d Possible mechanism involved in the photocatalytic activity of Au/PPy NHs [134]. Copyright 2019, Elsevier

Fig. 21

Reproduced from Ref. [129] with permission from the Royal Society of Chemistry. c H2 evolution by using 0.5 g l−1 modified catalyst, 1.0 wt% Pt and polypyrrole, respectively, 75 ml aqueous methanol solution; d scheme for photocatalytic activity of TiO2 modified with Pt–polypyrrole nanocomposites [143]. Copyright 2021, Elsevier

Similar content being viewed by others

References

  1. Ghosh S, Remita H, Basu RN (2018) Visible light-active photocatalysis: nanostructured catalyst design, mechanisms, and applications. Wiley, New York, pp 227–252

    Book  Google Scholar 

  2. Ghosh S (2018) Visible-light-active photocatalysis: nanostructured catalyst design, mechanisms, and applications. Wiley, New York

    Book  Google Scholar 

  3. Kippelen B, Brédas J-L (2009) Energy Environ Sci 2:251–261

    Article  CAS  Google Scholar 

  4. Shirakawa H, Ikeda S, Aizawa M, Yoshitake J, Suzuki S (1981) Synth Methods 4:43–49

    Article  CAS  Google Scholar 

  5. Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K (1985) J Chem Soc Chem Commun 25:474–475

    Article  Google Scholar 

  6. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  7. Stegbauer L, Schwinghammer K, Lotsch BV (2014) Chem Sci 5:2789–2793

    Article  CAS  Google Scholar 

  8. Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu W-H, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS (2018) Nat Chem 10:1180–1189

    Article  CAS  PubMed  Google Scholar 

  9. Pachfule P, Acharjya A, Roeser JRM, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J (2018) J Am Chem Soc 140:1423–1427

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S (2020) Angew Chem 132:6063–6070

    Article  Google Scholar 

  11. Meier CB, Clowes R, Berardo E, Jelfs KE, Zwijnenburg MA, Sprick RS, Cooper AI (2019) Chem Mater 31:8830–8838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng Z, Fang W, Zhao T, Fang S, Bi J, Liang S, Li L, Yu Y, Wu L (2018) ACS Appl Mater Interfaces 10:41415–41421

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Mao N, Zhang C, Wang X, Zeng J, Chen Y, Wang F, Jiang J-X (2018) Appl Catal B 228:1–9

    Article  CAS  Google Scholar 

  14. Sprick RS, Bonillo B, Sachs M, Clowes R, Durrant JR, Adams DJ, Cooper AI (2016) Chem Commun 52:10008–10011

    Article  CAS  Google Scholar 

  15. Schwab MG, Hamburger M, Feng X, Shu J, Spiess HW, Wang X, Antonietti M, Müllen K (2010) Chem Commun 46:8932–8934

    Article  CAS  Google Scholar 

  16. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert P-H, Remita H (2015) Nat Mater 14:505–511

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh S, Kouame NA, Remita S, Ramos L, Goubard F, Aubert P-H, Dazzi A, Deniset-Besseau A, Remita H (2015) Sci Rep 5:1–9

    Google Scholar 

  18. Floresyona D, Goubard F, Aubert P-H, Lampre I, Mathurin J, Dazzi A, Ghosh S, Beaunier P, Brisset F, Remita S (2017) Appl Catal B 209:23–32

    Article  CAS  Google Scholar 

  19. Yuan X, Floresyona D, Aubert P-H, Bui T-T, Remita S, Ghosh S, Brisset F, Goubard F, Remita H (2019) Appl Catal B 242:284–292

    Article  CAS  Google Scholar 

  20. Wu L, Zheng J, Wang L, Xiong X, Shao Y, Wang G, Wang JH, Zhong S, Wu M (2019) Angew Chem 131:821–825

    Article  Google Scholar 

  21. Li M, Li H, Zhong W, Zhao Q, Wang D (2014) ACS Appl Mater Interfaces 6:1313–1319

    Article  CAS  PubMed  Google Scholar 

  22. Zarenezhad H, Balkan T, Solati N, Halali M, Askari M, Kaya S (2020) Sol Energy 207:1300–1307

    Article  CAS  Google Scholar 

  23. Zhang L, He Y, Luo P, Ma L, Fan Y, Zhang S, Shi H, Li S, Nie Y (2020) J Mater Chem A 8:4483–4493

    Article  CAS  Google Scholar 

  24. Pan J, Yang M, Luo L, Xu A, Tang B, Cheng D, Cai G, Wang X (2019) ACS Appl Mater Interfaces 11:7338–7348

    Article  CAS  PubMed  Google Scholar 

  25. Angeli A, Alessandri L (1916) Gazz Chim Ital 46:279–285

    CAS  Google Scholar 

  26. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 25:578–580

    Article  Google Scholar 

  27. Chiang CK, Fincher C Jr, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Phys Rev Lett 39:1098

    Article  CAS  Google Scholar 

  28. Dou L, Liu Y, Hong Z, Li G, Yang Y (2015) Chem Rev 115:12633–12665

    Article  CAS  PubMed  Google Scholar 

  29. Lamprakopoulos S, Yfantis D, Yfantis A, Schmeisser D, Anastassopoulou J, Theophanides T (2004) Synth Met 144:229–234

    Article  CAS  Google Scholar 

  30. Mazumder MAJ, Sheardown H, Al-Ahmed A (2019) Functional polymers. Springer, Berlin

    Book  Google Scholar 

  31. Tat’yana VV, Efimov ON (1997) Russ Chem Rev 66:443

    Article  Google Scholar 

  32. Nalwa HS (2001) Handbook of surfaces and interfaces of materials, five-volume set. Elsevier, New York

    Google Scholar 

  33. Ansari R (2006) J Chem 3:186–201

    CAS  Google Scholar 

  34. Satoh M, Kaneto K, Yoshino K (1986) Synth Met 14:289–296

    Article  CAS  Google Scholar 

  35. Scott J, Bredas J-L, Yakushi K, Pfluger P, Street G (1984) Synth Met 9:165–172

    Article  CAS  Google Scholar 

  36. Ferenets M, Harlin A (2007) Thin Solid Films 515:5324–5328

    Article  CAS  Google Scholar 

  37. Koo Y, Kim B, Park D, Joo J (2004) Mol Cryst Liq Cryst 425:55–60

    Article  CAS  Google Scholar 

  38. Fang Q, Chetwynd D, Gardner J (2002) Sens Actuators A 99:74–77

    Article  CAS  Google Scholar 

  39. Cui Z, Coletta C, Dazzi A, Lefrancois P, Gervais M, Néron S, Remita S (2014) Langmuir 30:14086–14094

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Bober P, Trchová M, Stejskal J (2017) J Mater Chem C 5:4236–4245

    Article  CAS  Google Scholar 

  41. Brezoi D-V (2010) J Sci Arts 10:53

    Google Scholar 

  42. Kang E, Neoh K, Matsuyama T, Yamaoka H (1988) Polym Commun Guildford 29:201–203

    CAS  Google Scholar 

  43. Kang E, Ti H, Neoh K, Tan T (1988) Polym J 20:399–406

    Article  CAS  Google Scholar 

  44. Machida S, Miyata S, Techagumpuch A (1989) Synth Met 31:311–318

    Article  CAS  Google Scholar 

  45. Armes SP (1987) Synth Met 20:365–371

    Article  CAS  Google Scholar 

  46. Rapi S, Bocchi V, Gardini GP (1988) Synth Met 24:217–221

    Article  CAS  Google Scholar 

  47. Hong JY, Yoon H, Jang J (2010) Small 6:679–686

    Article  CAS  PubMed  Google Scholar 

  48. Liao Y, Li X-G, Kaner RB (2010) ACS Nano 4:5193–5202

    Article  CAS  PubMed  Google Scholar 

  49. Yang Y, Chu Y, Yang F, Zhang Y (2005) Mater Chem Phys 92:164–171

    Article  CAS  Google Scholar 

  50. Zhang J, Qiu T, Ren S, Yuan H, He L, Li X (2012) Mater Chem Phys 134:1072–1078

    Article  CAS  Google Scholar 

  51. Hao L, Zhu C, Chen C, Kang P, Hu Y, Fan W, Chen Z (2003) Synth Met 139:391–396

    Article  CAS  Google Scholar 

  52. Marinakos SM, Novak JP, Brousseau LC, House AB, Edeki EM, Feldhaus JC, Feldheim DL (1999) J Am Chem Soc 121:8518–8522

    Article  CAS  Google Scholar 

  53. Cheng D, Xia H, Chan HSO (2004) Langmuir 20:9909–9912

    Article  CAS  PubMed  Google Scholar 

  54. Mangold K-M, Schuster J, Weidlich C (2011) Electrochim Acta 56:3616–3619

    Article  CAS  Google Scholar 

  55. Su D, Zhang J, Dou S, Wang G (2015) Chem Commun 51:16092–16095

    Article  CAS  Google Scholar 

  56. Liu X, Wu H, Ren F, Qiu G, Tang M (2008) Mater Chem Phys 109:5–9

    Article  CAS  Google Scholar 

  57. Zhao J, Wu J, Li B, Du W, Huang Q, Zheng M, Xue H, Pang H (2016) Progress Nat Sci Mater Int 26:237–242

    Article  CAS  Google Scholar 

  58. Cheng F-L, Zhang M-L, Wang H (2005) Sensors 5:245–249

    Article  CAS  PubMed Central  Google Scholar 

  59. Kopecká J, Kopecký D, Vrňata M, Fitl P, Stejskal J, Trchová M, Bober P, Morávková Z, Prokeš J, Sapurina I (2014) RSC Adv 4:1551–1558

    Article  Google Scholar 

  60. Zhang X, Manohar SK (2005) J Am Chem Soc 127:14156–14157

    Article  CAS  PubMed  Google Scholar 

  61. Zhang X, Manohar SK (2004) J Am Chem Soc 126:12714–12715

    Article  CAS  PubMed  Google Scholar 

  62. Yang X, Zhu Z, Dai T, Lu Y (2005) Macromol Rapid Commun 26:1736–1740

    Article  CAS  Google Scholar 

  63. Yan Y, Li H, Zhang Y, Kan J, Jiang T, Pang H, Zhu Z, Xue H (2017) Int J Electrochem Sci 12:9320–9334

    Article  CAS  Google Scholar 

  64. Yang L, Zhang Z, Nie G, Wang C, Lu X (2015) J Mater Chem A 3:83–86

    Article  CAS  Google Scholar 

  65. Liu Z, Zhang X, Poyraz S, Surwade SP, Manohar SK (2010) J Am Chem Soc 132:13158–13159

    Article  CAS  PubMed  Google Scholar 

  66. Chen J, Chao D, Lu X, Zhang W, Manohar SK (2006) Macromol Rapid Commun 27:771–775

    Article  CAS  Google Scholar 

  67. Santino LM, Acharya S, D’Arcy JM (2017) J Mater Chem A 5:11772–11780

    Article  CAS  Google Scholar 

  68. Li C, Bai H, Shi G (2009) Chem Soc Rev 38:2397–2409

    Article  CAS  PubMed  Google Scholar 

  69. Genies E, Bidan G, Diaz A (1983) J Electroanal Chem Interfacial Electrochem 149:101–113

    Article  CAS  Google Scholar 

  70. Kim K-J, Song H-S, Kim J-D, Chon J-K (1988) Bull Korean Chem Soc 9:248–251

    CAS  Google Scholar 

  71. Asavapiriyanont S, Chandler G, Gunawardena G, Pletcher D (1984) J Electroanal Chem Interfacial Electrochem 177:229–244

    Article  CAS  Google Scholar 

  72. Qiu YJ, Reynolds JR (1992) J Polym Sci Part A Polym Chem 30:1315–1325

    Article  CAS  Google Scholar 

  73. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) Chem Soc Rev 29:283–293

    Article  Google Scholar 

  74. Nam D-H, Kim M-J, Lim S-J, Song I-S, Kwon H-S (2013) J Mater Chem A 1:8061–8068

    Article  CAS  Google Scholar 

  75. Xing J, Qi S, Wang Z, Yi X, Zhou Z, Chen J, Huang S, Tan G, Chen D, Yu P (2019) Adv Funct Mater 25:1806353

    Article  CAS  Google Scholar 

  76. Velazquez JM, Gaikwad AV, Rout TK, Rzayev J, Banerjee S (2011) ACS Appl Mater Interfaces 3:1238–1244

    Article  CAS  PubMed  Google Scholar 

  77. Chen Y, Meng J, Zhu Z, Zhang F, Wang L, Gu Z, Jiang L, Wang S (2018) Adv Func Mater 28:1800240

    Article  CAS  Google Scholar 

  78. Qu L, Shi G, Chen FE, Zhang J (2003) Macromolecules 36:1063–1067

    Article  CAS  Google Scholar 

  79. Qu L, Shi G, Yuan J, Han G, Chen FE (2004) J Electroanal Chem 561:149–156

    Article  CAS  Google Scholar 

  80. Qu L, Shi G (2004) J Polym Sci Part A Polym Chem 42:3170–3177

    Article  CAS  Google Scholar 

  81. Gao Y, Zhao L, Li C, Shi G (2006) Polymer 47:4953–4958

    Article  CAS  Google Scholar 

  82. Gao Y, Zhao L, Bai H, Chen Q, Shi G (2006) J Electroanal Chem 597:13–18

    Article  CAS  Google Scholar 

  83. Remita H, Lampre I, Mostafavi M, Balanzat E, Bouffard S (2005) Radiat Phys Chem 72:575–586

    Article  CAS  Google Scholar 

  84. Belloni J, Mostafavi M, Remita H, Marignier J-L, Delcourt M-O (1998) New J Chem 22:1239–1255

    Article  CAS  Google Scholar 

  85. Remita H, Remita S (2010) Recent trends in radiation chemistry. World Scientific Publishing Company, London, pp 347–383

    Book  Google Scholar 

  86. Wishart JF, Rao BM (2010) Recent trends in radiation chemistry. World Scientific, Singapore

    Book  Google Scholar 

  87. J. W. T. Spinks and R. J. Woods, 1990.

  88. Coletta C, Cui Z, Archirel P, Pernot P, Marignier J-L, Remita S (2015) J Phys Chem B 119:5282–5298

    Article  CAS  PubMed  Google Scholar 

  89. Bahry T, Cui Z, Deniset-Besseau A, Gervais M, Sollogoub C, Bui T-T, Remita S (2018) New J Chem 42:8704–8716

    Article  CAS  Google Scholar 

  90. Cui Z, Coletta C, Rebois R, Baiz S, Gervais M, Goubard F, Aubert P-H, Dazzi A, Remita S (2016) Radiat Phys Chem 119:157–166

    Article  CAS  Google Scholar 

  91. Cui Z, Bahry T, Dazzi A, Bui T-T, Goubard F, Remita S (2019) Radiat Phys Chem 159:47–56

    Article  CAS  Google Scholar 

  92. Bahry T, Cui Z, Deniset-Besseau A, Gervais M, Mbomekalle I, Sollogoub C, Aubert P-H, Bui T-T, Remita S (2020) New J Chem 44:11652–11666

    Article  CAS  Google Scholar 

  93. Bahry T, Khurshid B, Chouli Y, AbouZeid S, Sollogoub C, Gervais M, Bui T-T, Goubard F, Remita S (2021) N J Chem 45:13142–13157

    Article  CAS  Google Scholar 

  94. Bahry T, Cui Z, Dazzi A, Gervais M, Sollogoub C, Goubard F, Bui T-T, Remita S (2021) Radiat Phys Chem 180:109291

    Article  CAS  Google Scholar 

  95. Chouli Y, Belkhadem-Mokhtari F, Abou-Zeid S, Dragoe D, Saint-Martin R, Briset F, Remita H, Remita S (2022) Radiat Phys Chem 20:25

    Google Scholar 

  96. Wang J, Rong J, Fang Z, Wang M, Asif A, Wu Q, Zhou X, Ge X (2017) Part Part Syst Charact 34:1600430

    Article  CAS  Google Scholar 

  97. Kern J-M, Sauvage J-P (1989) J Chem Soc Chem Commun 25:657–658

    Article  Google Scholar 

  98. Martins C, De Almeida Y, DoNascimento G, De Azevedo W (2006) J Mater Sci 41:7413–7418

    Article  CAS  Google Scholar 

  99. Yang X, Lu Y (2005) Mater Lett 59:2484–2487

    Article  CAS  Google Scholar 

  100. Coakley KM, McGehee MD (2004) Chem Mater 16:4533–4542

    Article  CAS  Google Scholar 

  101. Yuan X, Dragoe D, Beaunier P, Uribe DB, Ramos L, Méndez-Medrano MG, Remita H (2020) J Mater Chem A 8:268–277

    Article  CAS  Google Scholar 

  102. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Adv Mater 29:1601694

    Article  CAS  Google Scholar 

  103. Lee W, Kim D, Lee S, Park J, Oh S, Kim G, Lim J, Kim J (2018) Nano Today 23:97–123

    Article  CAS  Google Scholar 

  104. Li S, Chen M, He L, Xu F, Zhao G (2009) J Mater Res 24:2547–2554

    Article  CAS  Google Scholar 

  105. Sun L, Shi Y, Li B, Li X, Wang Y (2013) Polym Compos 34:1076–1080

    Article  CAS  Google Scholar 

  106. Chowdhury D, Paul A, Chattopadhyay A (2005) Langmuir 21:4123–4128

    Article  CAS  PubMed  Google Scholar 

  107. Deng F, Li Y, Luo X, Yang L, Tu X (2012) Colloids Surf A 395:183–189

    Article  CAS  Google Scholar 

  108. Ghosh S, Ramos L, Remita H (2018) Nanoscale 10:5793–5819

    Article  CAS  PubMed  Google Scholar 

  109. Yuan X, Kobylanski MP, Cui Z, Li J, Beaunier P, Dragoe D, Colbeau-Justin C, Zaleska-Medynska A, Remita H (2020) J Environ Chem Eng 8:104178

    Article  CAS  Google Scholar 

  110. Li S, Xu S, He L, Xu F, Wang Y, Zhang L (2010) Polym-Plast Technol Eng 49:400–406

    Article  CAS  Google Scholar 

  111. Zhou L, Wang W, Xu H, Sun S, Shang M (2009) Chem Eur J 15:1776–1782

    Article  CAS  PubMed  Google Scholar 

  112. Amano F, Yamakata A, Nogami K, Osawa M, Ohtani B (2008) J Am Chem Soc 130:17650–17651

    Article  CAS  PubMed  Google Scholar 

  113. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Nat Commun 4:1–7

    Google Scholar 

  114. Cheng H, Huang B, Yang K, Wang Z, Qin X, Zhang X, Dai Y (2010) ChemPhysChem 11:2167–2173

    Article  CAS  PubMed  Google Scholar 

  115. Sánchez-Rodríguez D, Medrano MGM, Remita H, Escobar-Barrios V (2018) J Environ Chem Eng 6:1601–1612

    Article  CAS  Google Scholar 

  116. Zhao Z, Cao Y, Dong F, Wu F, Li B, Zhang Q, Zhou Y (2019) Nanoscale 11:6360–6367

    Article  CAS  PubMed  Google Scholar 

  117. Liu X, Cai L (2018) Appl Surf Sci 445:242–254

    Article  CAS  Google Scholar 

  118. Xu J, Hu Y, Zeng C, Zhang Y, Huang H (2017) J Colloid Interface Sci 505:719–727

    Article  CAS  PubMed  Google Scholar 

  119. Duan F, Zhang Q, Shi D, Chen M (2013) Appl Surf Sci 268:129–135

    Article  CAS  Google Scholar 

  120. Wang Q, Zheng L, Chen Y, Fan J, Huang H, Su B (2015) J Alloy Compd 637:127–132

    Article  CAS  Google Scholar 

  121. Yan B, Wang Y, Jiang X, Liu K, Guo L (2017) ACS Appl Mater Interfaces 9:29113–29119

    Article  CAS  PubMed  Google Scholar 

  122. Harraz FA, Ismail AA, Al-Sayari S, Al-Hajry A (2015) J Photochem Photobiol A 299:18–24

    Article  CAS  Google Scholar 

  123. Gogoi R, Singh A, Moutam V, Sharma L, Sharma K, Halder A, Siril PF (2022) J Environ Chem Eng 10:106649

    Article  CAS  Google Scholar 

  124. Wang D, Xu Y, Xie M, Song Y, Xu H, Li H, Xie J (2019) J Hazard Mater 25:121480

    Google Scholar 

  125. Abinaya M, Rajakumaran R, Chen S-M, Karthik R, Muthuraj V (2019) ACS Appl Mater Interfaces 11:38321–38335

    Article  CAS  PubMed  Google Scholar 

  126. Midya L, Chettri A, Pal S (2019) ACS Sustain Chem Eng 7:9416–9421

    Article  CAS  Google Scholar 

  127. Zhang Y, Liu J, Li S-L, Su Z-M, Lan Y-Q (2019) EnergyChem 25:100021

    Article  Google Scholar 

  128. Xu X, Gao X, Cui Z, Liu X, Zhang X (2014) Dalton Trans 43:13424–13433

    Article  CAS  PubMed  Google Scholar 

  129. Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C (2013) ACS Appl Mater Interfaces 5:6201–6207

    Article  CAS  PubMed  Google Scholar 

  130. Hao D, Yang Y, Xu B, Cai Z (2018) ACS Sustain Chem Eng 6:10789–10797

    Article  CAS  Google Scholar 

  131. Deng F, Min L, Luo X, Wu S, Luo S (2013) Nanoscale 5:8703–8710

    Article  CAS  PubMed  Google Scholar 

  132. Cai L, Jiang H, Wang L (2017) Appl Surf Sci 420:43–52

    Article  CAS  Google Scholar 

  133. Lin Y, Wu X, Han Y, Yang C, Ma Y, Du C, Teng Q, Liu H, Zhong Y (2019) Appl Catal B 258:117969

    Article  CAS  Google Scholar 

  134. Ghosh S, Rashmi D, Bera S, Basu RN (2019) Int J Hydrogen Energy 44:13262–13272

    Article  CAS  Google Scholar 

  135. Janczarek M, Kowalska E (2017) Catalysts 7:317

    Article  CAS  Google Scholar 

  136. Ghosh S, Keshri SR, Bera S, Basu RN (2020) Int J Hydrogen Energy 45:6159–6173

    Article  CAS  Google Scholar 

  137. Kandiel TA, Dillert R, Bahnemann DW (2009) Photochem Photobiol Sci 8:683–690

    Article  CAS  PubMed  Google Scholar 

  138. Dimitrijevic NM, Tepavcevic S, Liu Y, Rajh T, Silver SC, Tiede DM (2013) J Phys Chem C 117:15540–15544

    Article  CAS  Google Scholar 

  139. Li X, Wang P, Huang B, Qin X, Zhang X, Zhang Q, Zhu X, Dai Y (2017) Int J Hydrogen Energy 42:25195–25202

    Article  CAS  Google Scholar 

  140. Sathish M, Viswanath R (2007) Catal Today 129:421–427

    Article  CAS  Google Scholar 

  141. Zhang S, Chen Q, Wang Y, Guo L (2012) Int J Hydrog Energy 37:13030–13036

    Article  CAS  Google Scholar 

  142. Sui Y, Liu J, Zhang Y, Tian X, Chen W (2013) Nanoscale 5:9150–9155

    Article  CAS  PubMed  Google Scholar 

  143. Yuan X, Wang C, Dragoe D, Beaunier P, Colbeau-Justin C, Remita H (2021) Appl Catal B Environ 281:119457

    Article  CAS  Google Scholar 

  144. Kumar N, Kumar S, Gusain R, Manyala N, Eslava S, Ray SS (2020) ACS Appl Energy Mater 3:9897–9909

    Article  CAS  Google Scholar 

  145. Kuttassery F, Kumagai H, Kamata R, Ebato Y, Higashi M, Suzuki H, Abe R, Ishitani O (2021) Chem Sci 12:13216–13232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. X. Yuan (2020) Doctoral Dissertation, Chemical Physics [physics.chem-ph]. Université Paris-Saclay, English. NNT: 2020UPASF011

  147. Nosrati R, Olad A, Maryami F (2018) J Mol Struct 1163:174–184

    Article  CAS  Google Scholar 

  148. Děkanovský L, Elashnikov R, Kubiková M, Vokatá B, Švorčík V, Lyutakov O (2019) Adv Func Mater 29:1901880

    Article  CAS  Google Scholar 

  149. Yuan X, Mu Q, Xue S, Su Y, Zhu Y, Sun H, Deng Z, Peng Y (2021) J Energy Chem 60:202–208

    Article  Google Scholar 

  150. Peng X, Li J, Yi L, Liu X, Chen J, Cai P, Wen Z (2022) Appl Catal B 300:120737

    Article  CAS  Google Scholar 

  151. Mao H, Fu Y, Yang H, Deng Z-Z, Sun Y, Liu D, Wu Q, Ma T, Song X-M (2020) ACS Appl Mater Interfaces 12:25189–25199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hynd Remita.

Ethics declarations

Conflict of interest

On behalf of all authors, Hynd Remita states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Solar-driven catalysis,” edited by Nicolas Keller, Fernando Fresno, Agnieszka Ruppert and Patricia Garcia-Munoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Remita, H. Conjugated Polymer Polypyrrole Nanostructures: Synthesis and Photocatalytic Applications. Top Curr Chem (Z) 380, 32 (2022). https://doi.org/10.1007/s41061-022-00388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00388-4

Keywords

Navigation