Skip to main content

Advertisement

Log in

Scope of Ferrocene in Cathodic Materials of Lithium-Ion Batteries (LIBs): A Review

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In modern civilization, the growing energy demand has driven the discovery of new ways to produce energy along with energy storage. Several high-level kinds of research are flourishing on both fronts. The lithium-ion battery (LIB), since its first commercialization from the Sony Corporation, has fulfilled the expectation very well as a portable rechargeable battery. Most electronic devices are now powered by lithium-ion batteries (LIBs), and their application is now further being extended to steer electric vehicles. The biggest concern of the research works associated with LIBs is that it is becoming increasingly difficult to further enhance the energy density of the battery. Cell engineering has played a remarkable role in enhancing the volumetric energy density, but that has also reached its limit. While charging and discharging, lithium-ions (Li-ions) must pass through the active particles coating the electrodes, and therefore, careful control of the size, morphology, and architecture of the cathodic and anodic materials may produce surprising results. Recently, research on ferrocene-based materials such as polymers, nanocomposites, and metal-organic frameworks (MOFs) has gained some momentum because of their potential application as cathodic materials in LIBs owing to their low reactivity towards air, stable voltage range, and fast electrochemical kinetics. It is of note that several polymers with ferrocene either in their backbone or side chain have already been reported as cathodic materials. In the present review, the discussion will be primarily focused on the recent advances in the application and usage of ferrocene-based polymers as cathodic materials of LIBs. Additionally, this review will also summarize the application of some other ferrocene-based materials, e.g. nanocomposites and MOFs, as electrodes/electrolytes of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Y. Lu, and J. Chen, Nat. Rev. Chem. 4, 127 (2020).

    Article  CAS  Google Scholar 

  2. T. Sun, J. Xie, W. Guo, D.-S. Li, and Q. Zhang, Adv. Energy Mater. 10, 1904199 (2020).

    Article  CAS  Google Scholar 

  3. J. Xie, Z. Wang, Z.J. Xu, and Q. Zhang, Adv. Energy Mater. 8, 1703509 (2018).

    Article  CAS  Google Scholar 

  4. X. Zhan, Z. Chen, and Q. Zhang, J. Mater. Chem. A 5, 14463 (2017).

    Article  CAS  Google Scholar 

  5. S. Wang, L. Wang, K. Zhang, Z. Zhu, Z. Tao, and J. Chen, Nano Lett. 13, 4404 (2013).

    Article  CAS  Google Scholar 

  6. C. Li, H. Tan, J. Pei, C. Wang, C. Fan, F. Huang, B. Cao, M. Hao, Y. Li, Z. Wang, and J. Li, New J. Chem. 41, 14539 (2017).

    Article  CAS  Google Scholar 

  7. K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, Energy Environ. Sci. 10, 552 (2017).

    Article  CAS  Google Scholar 

  8. C. Li, K. Wang, J.Z. Li, and Q. Zhang, Nanoscale 12, 7870 (2020).

    Article  CAS  Google Scholar 

  9. C. Li, K. Wang, J. Li, Q. Zhang, and A.C.S. Mater, Lett. 2, 779 (2020).

    CAS  Google Scholar 

  10. J.B. Goodenough, and K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013).

    Article  CAS  Google Scholar 

  11. P. Verma, P. Maire, and P. Novák, Electrochim. Acta 55, 6332 (2010).

    Article  CAS  Google Scholar 

  12. K. Tasaki, A. Goldberg, J.-J. Lian, M. Walker, A. Timmons, and S.J. Harris, J. Electrochem. Soc. 156, A1019 (2009).

    Article  CAS  Google Scholar 

  13. Y. Kim, K.-S. Park, S.-H. Song, J. Han, and J.B. Goodenough, J. Electrochem. Soc. 156, A703 (2009).

    Article  CAS  Google Scholar 

  14. K. Mitzushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Mater. Res. Bull. 15, 783 (1980).

    Article  Google Scholar 

  15. P. Novák, K. Müller, K.S.V. Santhanam, and O. Haas, Chem. Rev. 97, 207 (1997).

    Article  Google Scholar 

  16. K.S. Park, S.B. Schougaard, and J.B. Goodenough, Adv. Mater. 19, 848 (2007).

    Article  CAS  Google Scholar 

  17. T. Suga, H. Konishi, and H. Nishide, Chem. Commun. 17, 1730 (2007).

    Article  CAS  Google Scholar 

  18. J. Qu, T. Katsumata, M. Satoh, J. Wada, and T. Masuda, Polymer 50, 391 (2009).

    Article  CAS  Google Scholar 

  19. Y.-Z. Su, Y.-P. Niu, Y.-Z. Xiao, M. Xiao, Z.-X. Liang, and K.-C. Gong, J. Polym. Sci. Part A Polym. Chem. 42, 2329 (2004).

    Article  CAS  Google Scholar 

  20. M. Yao, H. Senoh, S. Yamazaki, Z. Siroma, T. Sakai, and K. Yasuda, J. Power Sources 195, 8336 (2010).

    Article  CAS  Google Scholar 

  21. J. Zhang, L. Ren, C.G. Hardy, and C. Tang, Macromolecules 45, 6857 (2012).

    Article  CAS  Google Scholar 

  22. K. Cao, B. Tsang, Y. Liu, D. Chelladural, W.P. Power, and X. Wang, Organometallics 33, 531 (2014).

    Article  CAS  Google Scholar 

  23. R.R. Gagne, C.A. Koval, and G.C. Lisensky, Inorg. Chem. 19, 2854 (1980).

    Article  CAS  Google Scholar 

  24. K. Tamura, N. Akutagawa, M. Satoh, J. Wada, and T. Masuda, Macromol. Rapid Commun. 29, 1944 (2008).

    Article  CAS  Google Scholar 

  25. H. Zhong, G. Wang, Z. Song, X. Li, H. Tang, Y. Zhou, and H. Zhan, Chem. Commun. 50, 6768 (2014).

    Article  CAS  Google Scholar 

  26. T. Kawai, C. Iwakura, and H. Yoneyama, Electrochim. Acta. 34, 1357 (1989).

    Article  CAS  Google Scholar 

  27. T. Saji, Y. Maruyama, and S. Aoyagui, J. Electroanal. Chem. 86, 219 (1978).

    Article  CAS  Google Scholar 

  28. K. Sanechika, T. Yamamoto, and A. Yamamoto, Polym. J. 13, 255 (1981).

    Article  CAS  Google Scholar 

  29. P. Passiniemi, and J.E. Osterholm, Synth. Met. 18, 637 (1987).

    Article  CAS  Google Scholar 

  30. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, and L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008).

    Article  CAS  Google Scholar 

  31. T. Ramanathan, S. Stankovich, D.A. Dikin, H. Liu, H. Shen, S.T. Nguyen, and L.C. Brinson, J. Polym. Sci. Part B: Polym. Phys. 45, 2097 (2007).

    Article  CAS  Google Scholar 

  32. E.T. Thostenson, Z. Ren, and T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    Article  CAS  Google Scholar 

  33. T. Ramanathan, H. Liu, and L.C. Brinson, J. Polym. Sci. Part B: Polym. Phys. 43, 2269 (2005).

    Article  CAS  Google Scholar 

  34. T. Desai, P. Keblinski, and S.K. Kumar, J. Chem. Phys. 122, 134910 (2005).

    Article  CAS  Google Scholar 

  35. S.M. Beladi-Mousavi, S. Sadaf, L. Walder, M. Gallei, C. Rüttiger, S. Eigler, and C.E. Halbig, Adv. Energy Mater. 6, 1600108 (2016).

    Article  CAS  Google Scholar 

  36. C. Su, L. Wang, L. Xu, and C. Zhang, Electrochim. Acta 104, 302 (2013).

    Article  CAS  Google Scholar 

  37. A.G. Nasibulin, S.D. Shandakov, A.S. Anisimov, D. Gonzalez, H. Jiang, M. Pudas, P. Queipo, and E.I. Kauppinen, J. Phys. Chem. C 112, 5762 (2008).

    Article  CAS  Google Scholar 

  38. A. Leonhardt, S. Hampel, C. Müller, I. Mönch, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, and B. Büchner, Chem. Vap. Depos. 12, 380 (2006).

    Article  CAS  Google Scholar 

  39. H. Li, P. Balaya, and J. Maier, J. Electrochem. Soc. 151, A1878 (2004).

    Article  CAS  Google Scholar 

  40. R. Prakash, A.K. Mishra, A. Roth, C. Kübel, T. Scherer, M. Ghafari, H. Hahn, and M. Fichtner, J. Mater. Chem. 20, 1871 (2010).

    Article  CAS  Google Scholar 

  41. R. Prakash, C. Wall, A.K. Mishra, C. Kübel, M. Ghafari, H. Hahn, and M. Fichtner, J. Power Sources 196, 5936 (2011).

    Article  CAS  Google Scholar 

  42. C. Li, C. Zhang, J. Xie, K. Wang, J. Li, and Q. Zhang, Chem. Eng. J. 404, 126463 (2021).

    Article  CAS  Google Scholar 

  43. Y. Zhao, Y. Ding, J. Song, G. Li, G. Dong, J.B. Goodenough, and G. Yu, Angew. Chem. Int. Ed. Engl. 53, 11036 (2014).

    Article  CAS  Google Scholar 

  44. Z. Wei, D. Wang, Y. Liu, X. Guo, Y. Zhu, Z. Meng, Z.-Q. Yu, and W.-Y. Wong, J. Mater. Chem. C 8, 10774 (2020).

    Article  CAS  Google Scholar 

  45. C. Li, H. Yang, J. Xie, K. Wang, J. Li, Q. Zhang, and A.C.S. Appl, Mater. Interfaces 12, 32719 (2020).

    Article  CAS  Google Scholar 

  46. X. Wei, L. Cosimbescu, W. Xu, J.Z. Hu, M.V. Kumar, J. Feng, M.Y. Hu, X. Deng, J. Xiao, J. Liu, V. Sprenkle, and W. Wang, Adv. Energy Mater. 5, 1400678 (2015).

    Article  CAS  Google Scholar 

  47. H.-S. Kim, T. Yoon, Y. Kim, S. Hwang, J.H. Ryu, and S.M. Oh, Electrochem. Commun. 69, 72 (2016).

    Article  CAS  Google Scholar 

  48. B. Hwang, M.-S. Park, and K. Kim, Chemsuschem 8, 310 (2015).

    Article  CAS  Google Scholar 

  49. H. Chen, Z. Niu, J. Ye, C. Zhang, X. Zhang, Y. Zhao, and A.C.S. Appl, Energy Mater. 4, 855 (2021).

    CAS  Google Scholar 

  50. K. Ozawa, Lithium-Ion Rechargeable Batteries: Materials, Technology, and New Applications (Weinheim: Wiley-VCH, 2009).

    Book  Google Scholar 

  51. G. Venugopal, J. Power Sources 101, 231 (2001).

    Article  CAS  Google Scholar 

  52. X.M. Feng, X.P. Ai, and H.X. Yang, Electrochem. Commun. 6, 1021 (2004).

    Article  CAS  Google Scholar 

  53. Z.H. Chen, Y. Qin, and K. Amine, Electrochim. Acta 54, 5605 (2009).

    Article  CAS  Google Scholar 

  54. J.C. Forgie, S.E. Khakani, D.D. MacNeil, and D. Rochefort, Phys. Chem. Chem. Phys. 15, 7713 (2013).

    Article  CAS  Google Scholar 

  55. M. Winter, and J.O. Besenhard, Electrochim. Acta 45, 31 (1999).

    Article  CAS  Google Scholar 

  56. B. Scrosati, and J. Garche, J. Power Sources 195, 2419 (2010).

    Article  CAS  Google Scholar 

  57. R.D. Rauh, K.M. Abraham, G.F. Pearson, J.K. Surprenant, and S.B. Brummer, J. Electrochem. Soc. 126, 523 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Badri Nath Jha is thankful to the Science and Engineering Research Board (SERB), India, for providing funds (Project No. YSS/000699/2015) for the research work on the ferrocene-based cathodic materials of LIBs. BNJ and Abhinav Raghuvanshi are also grateful to Pradeep Mathur for his continuous inspiration towards exploring the new areas of chemical science. BNJ and Nishant Singh are also thankful to Amrendra Narayan Singh for his suggestions in improving the manuscript.

Funding

Science and Engineering Research Board (SERB), India, Project No. YSS/000699/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badri Nath Jha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This review article is dedicated to Professor Pradeep Mathur on his 66th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.N., Singh, N., Sahay, A.N. et al. Scope of Ferrocene in Cathodic Materials of Lithium-Ion Batteries (LIBs): A Review. J. Electron. Mater. 50, 6073–6086 (2021). https://doi.org/10.1007/s11664-021-09176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09176-0

Keywords

Navigation