Skip to main content
Log in

An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A LiFePO4/C sample was prepared via solid state reaction and characterized with X-ray powder diffraction, scanning electron microscopy and charge–discharge test. Conductive carbon and highly crystallized LiFePO4 were embedded in each other to form the as-prepared LiFePO4/C, which exhibited an excellent rate capability and capacity retention. The LiFePO4/C electrode reaction was investigated by the method of medium scan rate cyclic voltammetry (CV) under temperature variation. The limit values for the CV redox peak potentials of the LiFePO4/C electrode scanned at different rates were obtained by curve fitting. The reversibility of the LiFePO4/C electrode was studied and found to be both scan rate and temperature dependent. A higher temperature led to a higher critical CV scan rate for a reversible LiFePO4/C electrode. In the electrode process, a higher temperature resulted in a smoother Fe3+/Fe2+ redox reaction, better reversibility, lower R cv, smaller charge transfer resistance and higher Li+ ion diffusion coefficient at the cathode of the LiFePO4/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  CAS  Google Scholar 

  2. Bai P, Cogswell DA, Bazant MZ (2011) Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett 11(11):4890–4896

    Article  CAS  Google Scholar 

  3. Bilecka I, Hintennach A, Rossell MD, Xie D, Novákb P, Niederberger M (2011) Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. J Mater Chem 21(16):5881–5890

    Article  CAS  Google Scholar 

  4. Sun B, Wang Y, Wang B, Kim HS, Kim WS, Wang G (2013) Porous LiFePO4/C microspheres as high-power cathode materials for lithium ion batteries. J Nanosci Nanotechnol 13(5):3655–3659

    Article  CAS  Google Scholar 

  5. Arbizzani C, Beninati S, Mastragostino M (2010) A three-dimensional carbon-coated LiFePO4 electrode for high-power applications. J Appl Electrochem 40(1):7–11

    Article  CAS  Google Scholar 

  6. Yu S, Chung Y, Song MS, Nam JH, Cho WI (2012) Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes. J Appl Electrochem 42(6):443–453

    Article  CAS  Google Scholar 

  7. Fisher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M = Mn, Fe Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem Mater 20(18):5907–5915

    Article  CAS  Google Scholar 

  8. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3(3):147–152

    Article  CAS  Google Scholar 

  9. Chung SY, Bloking J, Chiang YM (2002) Electronically conductive phosphor-olivines as lithium storage electrode. Nat Mater 1(2):123–128

    Article  CAS  Google Scholar 

  10. Wagemaker M, Ellis BL, Lutzenkirchen-Hecht D, Mulder FM, Nazar LF (2008) Proof of supervalent doping in olivine LiFePO4. Chem Mater 20(20):6313–6315

    Article  CAS  Google Scholar 

  11. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5(1):5163–5185

    Article  CAS  Google Scholar 

  12. Gao F, Tang Z (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim Acta 53(15):5071–5075

    Article  CAS  Google Scholar 

  13. Zeng L, Gong Q, Liao X, He L, He Y, Ma Z (2011) Enhanced low-temperature performance of slight Mn-substituted LiFePO4/C cathode for lithium ion batteries. Chin Sci Bull 56(12):1262–1266

    Article  CAS  Google Scholar 

  14. Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148(3–4):283–289

    Article  CAS  Google Scholar 

  15. Hong J, Wang C, Kasavajjula U (2006) Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries. J Power Sources 162(2):1289–1296

    Article  CAS  Google Scholar 

  16. Zhu Y, Wang C (2010) Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C 114(6):2830–2841

    Article  CAS  Google Scholar 

  17. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929

    Article  CAS  Google Scholar 

  18. Qu T, Tian YW, Zhai YC (2007) Measurement of diffusion coefficient of lithium in LiFePO4 cathode material for Li-ion battery by PITT and EIS. Chin J Non-ferr Met 17(8):1255–1259

    CAS  Google Scholar 

  19. Zoski CG (2007) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  20. Huang YH, Wang FM, Huang TT, Chen JM, Hwang BJ, Rick J (2012) Micro-electrode linked cyclic voltammetry study reveals ultra-fast discharge and high ionic transfer behavior of LiFePO4. Int J Electrochem Sci 7(2):1205–1213

    CAS  Google Scholar 

  21. Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154(4):A253–A257

    Article  CAS  Google Scholar 

  22. Shi Y, Wen L, Li F, Cheng HM (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196(20):8610–8617

    Article  CAS  Google Scholar 

  23. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301

    Article  CAS  Google Scholar 

  24. Ramana CV, Mauger A, Gendron F, Julien CM, Zaghib K (2009) Study of the Li-insertion/extraction process in LiFePO4/FePO4. J Power Sources 187(2):555–564

    Article  CAS  Google Scholar 

  25. Haas O, Deb A, Cairns EJ, Wokaun A (2004) Synchrotron X-ray absorption study of LiFePO4 electrodes. J Electrochem Soc 152(1):A191–A196

    Article  Google Scholar 

  26. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152(5):A913–A919

    Article  CAS  Google Scholar 

  27. Eftekhari A (2004) Electrochemical deposition and modification of LiFePO4 for the preparation of cathode with enhanced battery performance. J Electrochem Soc 151(11):A1816–A1819

    Article  CAS  Google Scholar 

  28. Liu H, Li C, Zhang HP, Fu LJ (2006) Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 159(1):717–720

    Article  CAS  Google Scholar 

  29. Depifanio A, Fiory FS, Licoccia S, Traversa E, Scrosati B, Croce F (2004) Metallic-lithium, LiFePO4-based polymer battery using PEO-ZrO2 nanocomposite polymer electrolyte. J Appl Electrochem 34(4):403–408

    Article  CAS  Google Scholar 

  30. Wang XJ, Zhou XN, Lee HS, Nam KW, Yang XQ, Haas O (2011) Electrochemical investigation of Al–Li/Li x FePO4 cells in oligo(ethylene glycol) dimethyl ether/LiPF6. J Appl Electrochem 41(2):241–247

    Article  CAS  Google Scholar 

  31. Amine K, Liu J, Belharouak I (2005) High-temperature storage and cycling of C–LiFePO4/graphite Li-ion cells. Electrochem Commun 7(7):669–673

    Article  CAS  Google Scholar 

  32. Iltchev N, Chen Y, Okada S (2003) LiFePO4 storage at room and elevated temperatures. J Power Sources 119–121:749–754

    Article  Google Scholar 

  33. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is partially supported by Natural Science Foundation of Yunnan Province (2010ZC051), PR China, and Analysis and Testing Foundation (20140439) and Starting Research Fund (14118245) from Kunming University of Science and Technology, PR China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingjie Zhang or Guorong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Zhang, Y. & Hu, G. An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry. J Appl Electrochem 45, 225–233 (2015). https://doi.org/10.1007/s10800-014-0780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0780-1

Keywords

Navigation