Skip to main content
Log in

Optical, electrical, and electrochemical behavior of p-type nanostructured SnO2:Ni (NTO) thin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)−1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2 × 10−15 to 6.5 × 10−15 cm2 s−1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang Z, Zhao R, Sun B, Nie G, Ji H, Wang C (2016) Ceram Int 42(14):15881–15888

    Article  CAS  Google Scholar 

  2. Shalan AE, Rasly M, Osama I, Rashad MM, Ibrahim IA (2014) Ceram Int 40(8):11619–11626

    Article  CAS  Google Scholar 

  3. Seo YJ, Kim GW, Sung CH, Anwar MS, Lee CG, Koo BH (2011) Curr Appl Phys 11(3):S310–S313

    Article  Google Scholar 

  4. Lavanya N, Radhakrishnan S, Sekar C (2012) Biosens Bioelectron 36(1):41–47

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed SF, Khan S, Ghosh PK, Mitra MK, Chattopadhyay KK (2006) J Sol-Gel Sci Technol 39(3):241–247

    Article  CAS  Google Scholar 

  6. Tsay CY, Liang SC (2015) J Alloys Compd 622:644–450

    Article  CAS  Google Scholar 

  7. Ji Z, Zhao L, He Z, Zhou Q, Chen C (2006) Mater Lett 60(11):1387–1389

    Article  CAS  Google Scholar 

  8. Guipeng S, Jinliang Y, Peijiang N, Delan M (2016) J Semicond 37:023005–023006

    Article  CAS  Google Scholar 

  9. Bagheri-Mohagheghi MM, Shokooh-Saremi M (2004) Semicond Sci Technol 19(6):764–769

    Article  CAS  Google Scholar 

  10. Mazloom J, Ghodsi FE (2013) Mater Res Bull 48(4):1468–1476

    Article  CAS  Google Scholar 

  11. Ghodsi FE, Mazloom J (2012) Appl Phys A Mater Sci Process 108(3):693–700

    Article  CAS  Google Scholar 

  12. Bagheri-Mohagheghi MM, Shahtahmasebi N, Alinejad MR, Youssefi A, Shokooh-Saremi M (2009) Solid State Sci 11(1):233–239

    Article  CAS  Google Scholar 

  13. Lee PM, Wu YJ, Hsieh CY, Liao CH, Liu YS, Liu CY (2015) Appl Surf Sci 337:33–37

    Article  CAS  Google Scholar 

  14. Shewale PS, Sim KU, Kim YB, Kim JH, Moholkar AV, Uplane MD (2013) J Lumin 139:113–118

    Article  CAS  Google Scholar 

  15. Yadav AA (2016) J Mater Sci Mater Electron 27:1866–1872

    Article  CAS  Google Scholar 

  16. Yadav AA (2016) J Mater Sci Mater Electron 27:6985–6991

    Article  CAS  Google Scholar 

  17. Wan N, Zhao T, Sun S, Wu Q, Bai Y (2014) Electrochim Acta 143:257–264

    Article  CAS  Google Scholar 

  18. Ye X, Zhang W, Liu Q, Wang S, Yang Y, Wei H (2015) New J Chem 39(1):130–135

    Article  CAS  Google Scholar 

  19. Raj DV, Ponpandian N, Mangalaraj D, Viswanathan C (2014) Mater Sci Semicond Process 26:55–61

    Article  CAS  Google Scholar 

  20. Avila-Vazquez V, Galvan-Valencia M, Ledesma-Garcia J, Arriaga LG, Collins-Martinez VH, Guzman-Martinez C, Escalante-Garcia IL, Duron-Torres SM (2015) J Appl Electrochem 45(11):1175–1185

    Article  CAS  Google Scholar 

  21. Lu YC, Ma C, Alvarado J, Kidera T, Dimov N, Meng YS, Okada S (2015) J Power Sources 284:287–295

    Article  CAS  Google Scholar 

  22. Senoo Y, Kakinuma K, Uchida M, Uchida H, Deki S, Watanabe M (2014) RSC Adv 4(61):32180–32188

    Article  CAS  Google Scholar 

  23. Srinivas K, Rao SM, Reddy PV (2011) Nano 3:642–653

    CAS  Google Scholar 

  24. Cullity BD, Cullity SR, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  25. Pascariu P, Airinei A, Grigoras M, Fifere N, Sacarescu L, Lupu N, Stoleriu L (2016) J Alloys Compd 668:65–72

    Article  CAS  Google Scholar 

  26. Ahmed AS, Muhamed SM, Singla ML, Tabassum S, Naqvi AH, Azam A (2011) J Lumin 131(1):1–6

    Article  CAS  Google Scholar 

  27. Mahalingam T, John VS, Hsu LS (2007) J New Mater Electrochem Syst 10:9–14

    CAS  Google Scholar 

  28. Singh D, Kundu VS, Maan AS (2016) J Mol Struct 1115:250–257

    Article  CAS  Google Scholar 

  29. Van TT, Truc Ly N, Giang LT, My Dung CT (2016) J Nanomater 2016:1–5

    Article  CAS  Google Scholar 

  30. Morales FL, Zayas T, Contreras OE, Salgado L (2013) Front Mater Sci 7(4):387–395

    Article  Google Scholar 

  31. Nilavazhagan S, Muthukumaran S, Ashokkumar M (2015) J Mater Sci Mater Electron 26:3989–3996

    Article  CAS  Google Scholar 

  32. Thirumoorthi M, Prakash JT (2016) Superlattice Microst 89:378–389

    Article  CAS  Google Scholar 

  33. Singh R, Kumar M, Shankar S, Singh R, Ghosh AK, Thakur OP, Das B (2015) Mater Sci Semicond Process 31:310–314

    Article  CAS  Google Scholar 

  34. Gandhi TI, Babu RR, Ramamurthi K, Arivanandhan M (2016) J Mater Sci Mater Electron 27:1662–1669

    Article  CAS  Google Scholar 

  35. Tauc JC (1972) Optical properties of solids. North-Holland, Amsterdam

    Google Scholar 

  36. Ginley DS, Hosono H, Paine DC (eds) (2011) Handbook of transparent conductors. Springer, US

    Google Scholar 

  37. Swanepoel R (1983) J Phys E: SciInstrum 16(12):1214–1222

    Article  CAS  Google Scholar 

  38. Turgut G, Sönmez E (2014) Superlattice Microst 69:175–186

    Article  CAS  Google Scholar 

  39. Brus L (1986) J Phys Chem 90(12):2555–2560

    Article  CAS  Google Scholar 

  40. Mazloom J, Ghodsi FE, Zamani H, Golmojdeh H (2017) J Mater Sci Mater Electron 28:2183–2192

    Article  CAS  Google Scholar 

  41. Tauc J (1974) Amorphous and liquid semiconductor. Plenum, New York

    Book  Google Scholar 

  42. Hassanien AS, Akl AA (2016) Superlattice Microst 89:153–169

    Article  CAS  Google Scholar 

  43. Ventura SD, Birgin EG, Martínez JM, Chambouleyron I (2005) J Appl Phys 97(4):043512–043512

    Article  CAS  Google Scholar 

  44. DiDomenico M, Wemple SH (1969) J Appl Phys 40(2):720–734

    Article  CAS  Google Scholar 

  45. Sabri NS, Deni MS, Zakaria A, Talari MK (2012) Phys Procedia 25:233–239

    Article  CAS  Google Scholar 

  46. Singhal A, Sanyal B, Tyagi AK (2011) RSC Adv 1(5):903–910

    Article  CAS  Google Scholar 

  47. Mazloom J, Ghodsi FE, Gholami M (2013) J Alloys Compd 579:384–393

    Article  CAS  Google Scholar 

  48. Babar AR, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2011) J Semicond 32(5):053001–053008

    Article  CAS  Google Scholar 

  49. Vázquez-Arreguín R, Aguilar-Frutis M, Falcony-Guajardo C, Castañeda-Galván A, Mariscal-Becerra L, Gallardo-Hernández S, Alarcón-Flores G, García-Rocha M (2016) ECS J Solid State Sci Technol 5(3):Q101–Q107

    Article  CAS  Google Scholar 

  50. Jayalakshmi M, Mohan Rao M, Scholz F (2003) Langmuir 19(20):8403–8408

    Article  CAS  Google Scholar 

  51. Kalu EE, Nwoga TT, Srinivasan V, Weidner JW (2001) J Power Sources 92(1-2):163–167

    Article  CAS  Google Scholar 

  52. Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) J Power Sources 196(4):2393–2397

    Article  CAS  Google Scholar 

  53. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) J Power Sources 195(24):7904–7929

    Article  CAS  Google Scholar 

  54. Patil PS, Kawar RK, Sadale SB, Inamdar AI, Mahajan SS (2006) Sol Energy Mater Sol Cells 90(11):1629–1639

    Article  CAS  Google Scholar 

  55. Nian YR, Teng H (2003) J Electroanal Chem 540:119–127

    Article  CAS  Google Scholar 

  56. Chemla M, Dufrêche JF, Darolles I, Rouelle F, Devilliers D, Petitdidier S, Levy D (2005) Electrochim Acta 51(4):665–676

    Article  CAS  Google Scholar 

  57. Lee PY, Chang SP, Chang SJ (2015) J Environ Chem Eng 3(1):297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The partial support of this work by the Research Council of the University of Guilan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Ghodsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi-Koodehi, S., Ghodsi, F.E. & Mazloom, J. Optical, electrical, and electrochemical behavior of p-type nanostructured SnO2:Ni (NTO) thin films. J Solid State Electrochem 22, 2375–2384 (2018). https://doi.org/10.1007/s10008-018-3951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3951-x

Keywords

Navigation