Skip to main content
Log in

Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

SnO2 and Sb-doped SnO2 particles were synthesized using the polymeric precursor method with different Sn salt precursors: SnCl2·2H2O, SnCl4·5H2O, or Sn citrate. Sb2O3 was used as the precursor of Sb, and the molar ratio of n Sn:n Sb was held constant. FTIR and TGA/DTA were used to examine the influence of the Sn precursor on the formation and thermal decomposition of the Sn and Sn-Sb complexes. The calcination products obtained from heating the Sn and Sn-Sb complexes at 500°C in air were analyzed using XRD and TEM analysis. The results revealed that the SnO2 and Sb-doped SnO2 formation temperatures depended on the nature of the Sn precursor. The calcination products were found to be SnO2 and Sb-doped SnO2 particles, which crystallized in a tetragonal cassiterite structure with a highly preferred (110) planar orientation. The Sn precursor and the presence of Sb in the SnO2 matrix strongly influenced the crystallinity and lattice parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H, He Q, Zhu X, et al. Surfactant free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. CrystEngComm, 2012, 14(9): 3169–3176

    Article  CAS  Google Scholar 

  2. Wan Q, Wang T H. Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chemical Communications, 2005, 30(30): 3841–3843

    Article  Google Scholar 

  3. Zum Felde U, Haase M, Weller H. Electrochromism of highly doped nanocrystalline SnO2:Sb. The Journal of Physical Chemistry B, 2000, 104(40): 9388–9395

    Article  CAS  Google Scholar 

  4. Wang Y, Djerdj I, Smarsly B, et al. Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chemistry of Materials, 2009, 21(14): 3202–3209

    Article  CAS  Google Scholar 

  5. Xu C H, Sun J, Gao L. Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22(3): 975–979

    Article  CAS  Google Scholar 

  6. Li Z D, Zhou Y, Yu T, et al. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell. CrystEngComm, 2012, 14(20): 6462–6468

    Article  CAS  Google Scholar 

  7. Kim Y S, Yu B K, Kim D Y, et al. A hybridized electron-selective layer using Sb-doped SnO2 nanowires for efficient inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2011, 95(10): 2874–2879

    Article  CAS  Google Scholar 

  8. Lim J, Jeong B Y, Yoon H G, et al. Inkjet-printing of antimonydoped tin oxide (ATO) films for transparent conducting electrodes. Journal of Nanoscience and Nanotechnology, 2012, 12(2): 1675–1678

    Article  CAS  Google Scholar 

  9. Leem J W, Yu J S. Physical properties of electrically conductive Sb-doped SnO2 transparent electrodes by thermal annealing dependent structural changes for photovoltaic applications. Materials Science and Engineering B, 2011, 176(15): 1207–1212

    Article  CAS  Google Scholar 

  10. Wu S S, Cao H Q, Yin S F, et al. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. Journal of Physical Chemistry C, 2009, 113(41): 17893–17898

    Article  CAS  Google Scholar 

  11. Wang Y, Fan C, Hua B, et al. Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 778–783

    Article  CAS  Google Scholar 

  12. Paniza M. Chapter 2: Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants. In: Comninellis C, Chen G, eds. Electrochemistry for the Environment. Springer, 2010, 25

    Chapter  Google Scholar 

  13. Robertson J, Falabretti B. Chapter 2: electronic structure of transparent conducting oxides. In: Ginley D S, ed. Handbook of Transparent Conductors. New York: Springer, 2010, 27

  14. Singh A K, Janotti A, Scheffler M, et al. Sources of electrical conductivity in SnO2. Physical Review Letters, 2008, 101(5):055502 (4 pages)

    Article  Google Scholar 

  15. Li Z Q, Yin Y L, Liu X D, et al. Electronic structure and optical properties of Sb-doped SnO2. Journal of Applied Physics, 2009, 106(8): 083701

    Article  Google Scholar 

  16. Al-Gaashani R, Radiman S, Tabet N, et al. Optical properties of SnO2 nanostructures prepared via one-step thermal decomposition of tin(II) chloride dihydrate. Materials Science and Engineering B, 2012, 177(6): 462–470

    Article  CAS  Google Scholar 

  17. Yu D, Wang D, Yu W, et al. Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method. Materials Letters, 2004, 58(1–2): 84–87

    Article  CAS  Google Scholar 

  18. Ibarguen C A, Mosquera A, Parra R, et al. Synthesis of SnO2 nanoparticles through the controlled precipitation route. Materials Chemistry and Physics, 2007, 101(2–3): 433–440

    Article  CAS  Google Scholar 

  19. Nguyen T B, Le T T B, Nguyen N L. The preparation of SnO2 and SnO2:Sb nanopowders by a hydrothermal method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1(2):025002 (4 pages)

    Google Scholar 

  20. Korosi L, Papp S, Meynen V, et al. Preparation and characterization of SnO2 nanoparticles of enhanced thermal stability: The effect of phosphoric acid treatment on SnO2·nH2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268(1–3): 147–154

    Article  Google Scholar 

  21. Seo M, Akutsu Y, Kagemoto H. Preparation and properties of Sbdoped SnO2/metal substrates by sol-gel and dip coating. Ceramics International, 2007, 33(4): 625–629

    Article  CAS  Google Scholar 

  22. Zhu F L, Meng Y S. Synthesis and characterization of antimony doped tin oxide conductive nanoparticles by alkoxide hydrolysis method. Advanced Materials Research, 2013, 702: 167–171

    Article  Google Scholar 

  23. Leite E R, Maciel A P, Weber I T, et al. Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Advanced Materials, 2002, 14(12): 905–908

    Article  CAS  Google Scholar 

  24. Rodrigues E C P E, Olivi P. Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors. Journal of Physics and Chemistry of Solids, 2003, 64(7): 1105–1112

    Article  CAS  Google Scholar 

  25. Xu J M, Li L, Wang S, et al. Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm, 2013, 15(17): 3296–3300

    Article  CAS  Google Scholar 

  26. Zhong X, Yang B, Zhang X, et al. Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol-gel method. Particuology, 2012, 10(3): 365–370

    Article  CAS  Google Scholar 

  27. Aziz M, Saber Abbas S, Wan Baharom W R. Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Materials Letters, 2013, 91: 31–34

    Article  CAS  Google Scholar 

  28. Jeng J S. The influence of annealing atmosphere on the material properties of sol-gel derived SnO2:Sb films before and after annealing. Applied Surface Science, 2012, 258(16): 5981–5986

    Article  CAS  Google Scholar 

  29. Ningthoujam R S, Kulshreshtha S K. Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: luminescence and Raman studies. Materials Research Bulletin, 2009, 44(1): 57–62

    Article  CAS  Google Scholar 

  30. Gordillo G, Moreno L C, de la Cruz W, et al. Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnC12 and SnC14 precursors. Thin Solid Films, 1994, 252(1): 61–66

    Article  CAS  Google Scholar 

  31. Comninellis Ch, Vercesi G P. Problems in DSA® coating deposition by termal decomposition. Journal of Applied Electrochemistry, 1991, 21(2): 136–142

    Article  CAS  Google Scholar 

  32. Terrier C, Chatelon J P, Roger J A, et al. Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method. Journal of Sol-Gel Science and Technology, 1997, 10(1): 75–81

    Article  CAS  Google Scholar 

  33. Terrier C, Chatelon J P, Berjoan R, et al. Sb-doped SnO2, transparent conducting oxide from the sol-gel dip-coating technique. Thin Solid Films, 1995, 263(1): 37–41

    Article  CAS  Google Scholar 

  34. Gonzalez-Oliver C J R, Kato I. Sn(Sb)-oxide sol-gel coatings on glass. Journal of Non-Crystalline Solids, 1986, 82(1–3): 400–410

    Article  CAS  Google Scholar 

  35. Xu C, Xu G, Liu Y, et al. Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scripta Materialia, 2002, 46(11): 789–794

    Article  CAS  Google Scholar 

  36. Bhagwat M, Shah P, Ramaswamy V. Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Materials Letters, 2003, 57(9–10): 1604–1611

    Article  CAS  Google Scholar 

  37. Pechini M P. US Patent, 3 330 697, 1967-07-01

  38. Besso M M. US Patent, 3 213 120, 1965-10-19

  39. Tselesh A S. Anodic behaviour of tin in citrate solutions: The IR and XPS study on the composition of the passive layer. Thin Solid Films, 2008, 516(18): 6253–6260

    Article  CAS  Google Scholar 

  40. Chalupa J, Handlir K, Cisarova I, et al. Structural study of bis (triorganotin(IV)) esters of 4-ketopimelic acid. Journal of Organometallic Chemistry, 2006, 691(12): 2631–2640

    Article  CAS  Google Scholar 

  41. Feng S, Tang Y, Xiao T. Anodization, precursor route to flowerlike patterns composed of nanoporous tin oxide nanostrips on tin substrate. Journal of Physical Chemistry C, 2009, 113(12): 4809–4813

    Article  CAS  Google Scholar 

  42. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. Vol. 25, 2007

  43. Batista P D, Mulato M, Graeff C F O, et al. SnO2 extended gate field-effect transistor as pH sensor. Brazilian Journal of Physics, 2006, 36(2a): 478–481

    Article  CAS  Google Scholar 

  44. Grzeta B, Tkalcec E, Goebbert C, et al. Structural studies of nanocrystalline SnO2 doped with antimony: XRD and Mössbauer spectroscopy. Journal of Physics and Chemistry of Solids, 2002, 63(5): 765–772

    Article  CAS  Google Scholar 

  45. Krishnakumar T, Jayaprakash R, Pinna N, et al. Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. Journal of Physics and Chemistry of Solids, 2009, 70(6): 993–999

    Article  CAS  Google Scholar 

  46. Zhang D L, Tao L, Deng Z B, et al. Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol-gel dip-coating processing. Materials Chemistry and Physics, 2006, 100(2–3): 275–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Salgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López Morales, F., Zayas, T., Contreras, O.E. et al. Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method. Front. Mater. Sci. 7, 387–395 (2013). https://doi.org/10.1007/s11706-013-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0227-3

Keywords

Navigation