Skip to main content
Log in

Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1 − xSbxO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn1 − xSbxO2 (0 ≤ x ≤0.1) nanoparticles were synthesized by chemical solution method using organic solvent. Antibacterial and photocatalytic activities of the prepared nanoparticles were discussed based on structural, compositional and optical properties. The X-ray diffraction patterns indicated that the Sb doping decreased the crystallite size and lattice parameters of SnO2 nanoparticles while the compressive strain and dislocation density of cassiterite phase increased. The X-ray photoelectron spectroscopy spectra of Sn1 − xSbxO2 confirmed that Sb ions substituted at Sn4+ sites with +5 valance state. Field emission scanning electron microscopy showed that the nanoparticles possess spherical shape and Sb doping decreased the grain size. UV–Vis absorption spectra revealed that the substitution of Sb in SnO2 lattice leads to band gap narrowing from 4.06 to 3.85 eV. Photoluminscence spectra of Sn1 − xSbxO2 nanoparticles disclosed a green emission due to the presence of oxygen vacancies and Sn0.95Sb0.05O2 had highest emission intensity among all samples. The Sn1 − xSbxO2 nanoparticles exhibited enhanced photodegradation of rhodamine B and methylen blue dyes under UV illumination compared to the undoped SnO2. The bactericidal activity of Sn1 − xSbxO2 nanoparticles was investigated against bacterial pathogens including E. coli, P. aeruginosa, and S. aureus. The results revealed that antibacterial and photocatalytic activities of nanoparticles strongly depend on reactive oxygen species and structural parameter of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Sun, W.D. Chemelewski, S.P. Berglund, C. Li, H. He, G. Shi, C.B. Mullins, ACS Appl. Mater Interfaces 6, 5494–5499 (2014)

    Article  Google Scholar 

  2. Y. Wang, Q. Mu, G. Wang, Z. Zhou, Sens. Actuators B 145, 847–853 (2010)

    Article  Google Scholar 

  3. U. Zum Felde, M. Haase, H. Weller, J. Phys. Chem. B 104, 9388–9395 (2000)

    Article  Google Scholar 

  4. Y.S. Kim, W.B. Kim, Y.L. Joo, J. Mater. Chem. A 2, 8323–8327 (2014)

    Article  Google Scholar 

  5. S. Dai, Z. Yao, Appl. Surf. Sci. 258, 5703–5706 (2012)

    Article  Google Scholar 

  6. M. Huang, J. Yu, B. Li, C. Deng, L. Wang, W. Wu, L. Dong, F. Zhang, M. Fan, J. Alloys Compd. 629, 55–61 (2015)

    Article  Google Scholar 

  7. C. Zhu, Y. Li, Q. Su, B. Lu, J. Pan, J. Zhang, E. Xie, W. Lan, J. Alloys Compd. 575, 333–338 (2013)

    Article  Google Scholar 

  8. A. Kar, S. Kundu, A. Patra, RSC Adv. 2, 10222–10230 (2012)

    Article  Google Scholar 

  9. L. Tang, V.H. Nguyen, Y.R. Lee, J. Kim, J.J. Shim, Synth. Met. 201, 54–60 (2015)

    Article  Google Scholar 

  10. M. Mansoob Khan, S.A. Ansari, M. Ehtisham Khan, M.O. Ansari, B.K. Min, M.H. Cho, New J. Chem. 39, 2758–2766 (2015)

    Article  Google Scholar 

  11. A.M. Al-Hamdi, M. Sillanpää, J. Dutta, J. Alloys Compd. 618, 366–371 (2015)

    Article  Google Scholar 

  12. S. Vadivel, G. Rajarajan, J. Mater. Sci.: Mater. Electron. 26, 5863–5870 (2015)

    Google Scholar 

  13. P. Rajeshwaran, A. Sivarajan, G. Raja, D. Madhan, P. Rajkumar, J. Mater. Sci.: Mater. Electron. 27, 2419–2425 (2016)

    Google Scholar 

  14. M. Davis, F. Hung-Low, W.M. Hikal, L.J. Hope-Weeks, J. Mater. Sci. 48, 6404–6409 (2013)

    Article  Google Scholar 

  15. J. Mazloom, F.E. Ghodsi, H. Golmojdeh, J. Alloys Compd. 639, 393–399 (2015)

    Article  Google Scholar 

  16. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water Res. 42, 4591–4602 (2008)

    Article  Google Scholar 

  17. M. Moritz, M. Geszke-Moritz, Chem. Eng. J. 228, 596–613 (2013)

    Article  Google Scholar 

  18. M.J. Hajipour, K.M. Fromm, A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends Biotechnol. 30, 499–511 (2012)

    Article  Google Scholar 

  19. S.J. Soenen, P. Rivera-Gil, J.M. Montenegro, W.J. Parak, S.C. De Smedt, K. Braeckmans, Nano Today 6, 446–465 (2011)

    Article  Google Scholar 

  20. Y. Li, W. Zhang, J. Niu, Y. Chen, ACS Nano 6, 5164–5173 (2012)

    Article  Google Scholar 

  21. M.M. Kumari, D. Philip, Powder Technol. 270, 312–319 (2015)

    Article  Google Scholar 

  22. N. Talebian, H. Sadeghi, H. Zavvare, J. Photochem. Photobiol. B 130, 132–139 (2014)

    Article  Google Scholar 

  23. J. Henry, K. Mohanraj, G. Sivakumar, S. Umamaheswari, Spectrochim. Acta Part A 143, 172–178 (2015)

    Article  Google Scholar 

  24. D. Chandran, L.S. Nair, S. Balachandran, K.R. Babu, M. Deepa, J. Sol–Gel. Sci. Technol. 76, 582–591 (2015)

    Article  Google Scholar 

  25. J. Mazloom, F.E. Ghodsi, M. Gholami, J. Alloys Compd. 579, 384–393 (2013)

    Article  Google Scholar 

  26. Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, J. Alloys Compd. 634, 37–42 (2015)

    Article  Google Scholar 

  27. Y.Q. Li, J.L. Wang, S.Y. Fu, S.G. Mei, J.M. Zhang, K. Yong, Mater. Res. Bull. 45, 677–681 (2010)

    Article  Google Scholar 

  28. J. Zhang, L. Gao, Mater. Res. Bull. 39, 2249–2255 (2004)

    Article  Google Scholar 

  29. T.G. Conti, A.J. Chiquito, R.O. Da Silva, E. Longo, E.R. Leite, J. Am. Ceram. Soc. 93, 3862–3866 (2010)

    Article  Google Scholar 

  30. V. Muller, M. Rasp, G. Stefani, J. Ba, S. Gunther, J. Rathousky, M. Niederberger, D. Fattakhova-Rohlfing, Chem. Mater. 21, 5229–5236 (2009)

    Article  Google Scholar 

  31. J. Zhang, L. Gao, Mater. Chem. Phys. 87, 10–13 (2004)

    Article  Google Scholar 

  32. T.B. Nguyen, T.T.B. Le, N.L. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 025002–025005 (2010)

    Article  Google Scholar 

  33. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  34. E. Senadin, H. Kavak, R. Esen, J. Phys. Condens. Matter. 18, 6391–6400 (2006)

    Article  Google Scholar 

  35. V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175–1179 (2008)

    Article  Google Scholar 

  36. H.L. Ma, X.T. Hao, J. Ma, Y.G. Yang, J. Huang, D.H. Zhang, X.G. Xu, Appl. Surf. Sci. 191, 313–318 (2002)

    Article  Google Scholar 

  37. Y. Wang, T. Chen, Electrochim. Acta 54, 3510–3515 (2009)

    Article  Google Scholar 

  38. D.S. Ginley, H. Hosono, D.C. Paine, Handbook of transparent conductors (Springer, New York, 2011)

    Book  Google Scholar 

  39. E.J.H. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite, J.A. Varela, Appl. Phys. Lett. 84, 1745–1747 (2004)

    Article  Google Scholar 

  40. L.E. Brus, J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  41. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, A.C.S. Appl, Mater. Interfaces 4, 4024–4030 (2012)

    Article  Google Scholar 

  42. T. Krishnakumar, R. Jayaprakash, N. Pinna, V.N. Singh, B.R. Mehta, A.R. Phani, Mater. Lett. 63, 896–898 (2009)

    Article  Google Scholar 

  43. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33–177 (2004)

    Article  Google Scholar 

  44. S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893–17898 (2009)

    Article  Google Scholar 

  45. G.J. Tortora, B.R. Funke, CL case introduction to microbiology, 10th edn. (Pearson Education Inc., New Jersey, 2010)

    Google Scholar 

  46. Y.W. Baek, Y.J. An, Sci. Total Environ. 409, 1603–1608 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mazloom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloom, J., Ghodsi, F.E., Zamani, H. et al. Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1 − xSbxO2 nanoparticles. J Mater Sci: Mater Electron 28, 2183–2192 (2017). https://doi.org/10.1007/s10854-016-5784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5784-7

Keywords

Navigation