Skip to main content
Log in

Preparation of Sb:SnO2 thin films and its effect on opto-electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study focuses on pure and antimony (Sb)-doped tin oxide thin film and its influence on their structural, optical, and electrical properties. Both undoped and Sb-doped SnO2 thin films have been grown by using simple, inexpensive pyrolysis spray technique. The deposition temperature was optimized to 450 °C. X-ray diffractions pattern have revealed that the films are polycrystalline and have tetragonal rutile-type crystal structure. Undoped SnO2 films grow along (110) preferred orientation, while the Sb-doped SnO2 films grow along (200) direction. The size of Sb-doped tin oxide crystals changes from 26.3 to 58.0 nm when dopant concentration is changed from 5 to 25 wt%. The transmission spectra revealed that all the samples are transparent in the visible region, and the optical bandgap varies between 3.92 and 3.98 eV. SEM analysis shows that the surface morphology and grain size are affected by the doping rate. All the films exhibit a high transmittance in the visible region and show a sharp fundamental absorption edge at about 0.38–0.40 nm. The maximum electrical conductivity of 362.5 S/cm was obtained for the film doped with 5 wt% Sb. However, the carrier concentration is increased from 0.708 × 1018 to 4.058 × 1020 cm3. The electrical study reveals that the films have n-type electrical conductivity and depend on Sb concentration. We observed a decrease in sheet resistance and resistivity with the increase in Sb dopant concentration. For the dopant concentration of 5 wt% of Sb in SnO2, the Rs and ρ were found minimum with the values of 88.55 (Ω cm−2) and 2.75 (Ω cm), respectively. We observed an increase in carrier concentration and a decrease in mobility with the addition of Sb up to 25 wt%. The highest figure of merit values 2.5 × 10–3 Ω−1 is obtained for the 5wt% Sb, which may be considered potential materials for solar cells' transparent windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. I. Saadeddin, B. Pecquenard, J.P. Manaud, R. Decourt, C. Labrugère, T. Buffeteau, G. Campet, Synthesis and characterization of single- and co-doped SnO2 thin films for optoelectronic applications. Appl. Surf. Sci. 253(12), 5240–5249 (2007)

    Article  CAS  Google Scholar 

  2. R.S. Niranjan, Y.K. Hwang, D.K. Kim, S.H. Jhung, J.S. Chang, I.S. Mulla, Nanostructured tin oxide: synthesis and gas-sensing properties. Mater. Chem. Phys. 92(2–3), 384–388 (2005)

    Article  CAS  Google Scholar 

  3. A.Z. Simões, A. Ries, E.C. Souza, L. Perazolli, M. Cilense, E. Longo, J.A. Varela, Investigation of electrical properties of tantalum doped SnO2 varistor system. Ceram. Int. 31(3), 399–404 (2005)

    Article  CAS  Google Scholar 

  4. W. Yang, S. Yu, Y. Zhang, W. Zhang, Properties of Sb-doped SnO2 transparent conductive thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films 542, 285–288 (2013)

    Article  CAS  Google Scholar 

  5. A.A. Yadav, S.C. Pawar, D.H. Patil, M.D. Ghogare, Properties of (200) oriented, highly conductive SnO2 thin films by chemical spray pyrolysis from non-aqueousmedium: effect of antimony doping. J. Alloy. Compd. 652, 145–152 (2015)

    Article  CAS  Google Scholar 

  6. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films: the role of thickness. J. Semiconductors 32(5), 053001 (2011)

    Article  CAS  Google Scholar 

  7. H. Bendjedidi, A. Attaf, H. Saidi, M.S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta, Properties of n-type SnO2 semiconductorprepared by spray ultrasonic technique for photovoltaic applications. J. Semiconductors 36(12), 123002 (2015)

    Article  CAS  Google Scholar 

  8. E. Kuantama, D.W. Han, Y.M. Sung, J.E. Song, C.H. Han, Structure and thermal properties of transparent conductive nanoporous F: SnO2 films. Thin Solid Films 517(14), 4211–4214 (2009)

    Article  CAS  Google Scholar 

  9. B. Thangaraju, Structural and electricalstudies on highlyconducting spray deposited fluorine and Antimony doped SnO2 thin films from SnCl2 precursor. Thinsolid films 402(1–2), 71–78 (2002)

    Article  CAS  Google Scholar 

  10. A. Rahal, A. Benhaoua, C. Bouzidi, B. Benhaoua, B. Gasmi, Effect of antimony doping on the structural, optical and electricalproperties of SnO2 thin films prepared by spray ultrasonic. Superlattices Microstruct. 76, 105–114 (2014)

    Article  CAS  Google Scholar 

  11. B. Benhaoua, S. Abbas, A. Rahal, A. Benhaoua, M.S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solarcells applications. Superlattices Microstruct. 83, 78–88 (2015)

    Article  CAS  Google Scholar 

  12. G. Gasparro, J. Pütz, D. Ganz, M.A. Aegerter, Parameters affecting the electrical conductivity of SnO2: Sb sol–gel coatings. Sol. Energy Mater. Sol. Cells 54(1–4), 287–296 (1998)

    Article  CAS  Google Scholar 

  13. K.Y. Rajpure, M.N. Kusumade, M.N. Neumann-Spallart, C.H. Bhosale, Effect of Sb doping on properties of conductive spray deposited SnO2 thin films. Mater. Chem. Phys. 64(3), 184–188 (2000)

    Article  CAS  Google Scholar 

  14. S. Gupta, B.C. Yadav, P.K. Dwivedi, B. Das, Microstructural, optical and electrical investigations of Sb-SnO2 thin films deposited by spray pyrolysis. Mater. Res. Bull. 48(9), 3315–3322 (2013)

    Article  CAS  Google Scholar 

  15. J. Kim, B.J. Murdoch, J.G. Partridge, K. Xing, D.C. Qi, J. Lipton-Duffin et al., Ultrasonic spray pyrolysis of antimony-doped tin oxide transparent conductive coatings. Adv. Mater. Interfaces 7(18), 2000655 (2020)

    Article  CAS  Google Scholar 

  16. E. Elangovan, K. Ramesh, K. Ramamurthi, Studies on the structural and electrical properties of spray deposited SnO2: Sb thin films as a function of substrate temperature. Solid State Commun. 130(8), 523–527 (2004)

    Article  CAS  Google Scholar 

  17. A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, G. Brahim, Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik 127(5), 2653–2658 (2016)

    Article  CAS  Google Scholar 

  18. K. Derrar, M. Zaabat, I. Zerrouk, A. Hafdallah, N. Rouabah, B. Gasmi, Optical and structural properties of SnO2 thin films deposited by spray pyrolysis technique: effect of solution concentration. in Defect and Diffusion Forum (vol. 397, pp. 179–186, 2019)

  19. C. Nassiri, A. Hadri, F.Z. Chafi, A. El Hat, N. Hassanain, M. Rouchdi et al., Structural, optical and electrical properties of Fe doped SnO2 prepared by spray pyrolysis. J. Mater. Environ. Sci 8(2), 420–425 (2017)

    CAS  Google Scholar 

  20. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattices Microstruct. 70, 61–69 (2014)

    Article  CAS  Google Scholar 

  21. B. Benrabah, A. Bouaza, A. Kadari, M.A. Maaref, Impedance studies of Sb doped SnO2 thin film prepared by sol gel process. Superlattices Microstruct. 50(6), 591–600 (2011)

    Article  CAS  Google Scholar 

  22. T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 700(1–3), 175–181 (2004)

    Article  CAS  Google Scholar 

  23. S. Lenaerts, J. Roggen, G. Maes, FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim. Acta Part A 51(5), 883–894 (1995)

    Article  Google Scholar 

  24. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wang, Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol–gel-calcination or sol–gel-hydrothermal route. J. Alloy Compd. 454(1–2), 261–267 (2008)

    Article  CAS  Google Scholar 

  25. S.H. Saeedabad, G.S. Selopal, S.M. Rozati, Y. Tavakoli, G. Sberveglieri, From transparent conducting material to gas-sensing application of SnO2: Sb thin films. J. Electron. Mater. 47(9), 5165–5173 (2018)

    Article  CAS  Google Scholar 

  26. S.Y. Lee, B.O. Park, Structural, electrical and optical characteristics of SnO2: Sb thin films by ultrasonic spray pyrolysis. Thins Solid Films 510(1–2), 154–158 (2006)

    Article  CAS  Google Scholar 

  27. A. Hafdallah, K. Derrar, M.S. Aida, N. Attaf, Effet de la solution précurseur sur les propriétés structurales et optiques des couches minces de ZnO préparées par spray pyrolyse. Afr. Sci. 12(3), 26–33 (2016)

    Google Scholar 

  28. A. Adjimi, M.S. Aida, N. Attaf, Y.S. Ocak, Gadolinium doping effect on SnO2 thin films optical and electrical properties. Mater. Res. Express 6(9), 096405 (2019)

    Article  CAS  Google Scholar 

  29. X. Feng, J. Ma, F. Yang, F. Ji, C. Luan, H. Ma, Structural and optical properties of SnO2 films grown on α-Al2O3 (0 0 0 1) by MOCVD. J. Cryst. Growth 310(2), 295–298 (2008)

    Article  CAS  Google Scholar 

  30. A. Czapla, E. Kusior, M. Bucko, Optical properties of non-stoichiometric tin oxide films obtained by reactive sputtering. Thin Solid Films 182(1–2), 15–22 (1989)

    Article  CAS  Google Scholar 

  31. A.E. Rakhshani, Y. Makdisi, H.A. Ramazaniyan, Electronic and optical properties of fluorine-doped tin oxide films. J. Appl. Phys. 83(2), 1049–1057 (1998)

    Article  CAS  Google Scholar 

  32. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93(3), 632 (1954)

    Article  CAS  Google Scholar 

  33. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B 67(10), 775 (1954)

    Article  Google Scholar 

  34. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)

    Article  CAS  Google Scholar 

  35. I. Singh, R.K. Bedi, Studies and correlation among the structural, electrical and gas response properties of aerosol spray deposited self assembled nanocrystalline CuO. Appl. Surf. Sci. 257(17), 7592–7599 (2011)

    Article  CAS  Google Scholar 

  36. H.J. Lin, T.S. Yang, M.C. Wang, C.S. Hsi, Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol–gel spin coating. J. Alloy Compd. 610, 478–485 (2014)

    Article  CAS  Google Scholar 

  37. A.M. Selman, Z. Hassan, M. Husham, Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different Ph values. Measurement 56, 155–162 (2014)

    Article  Google Scholar 

  38. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Room temperature photoluminescence of anatase and rutile TiO2 powders. J. Lumin. 146, 199–204 (2014)

    Article  CAS  Google Scholar 

  39. A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, T.J. Marks, Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull. 25(8), 45–51 (2000)

    Article  CAS  Google Scholar 

  40. P.V. Bhuvaneswari, P. Velusamy, R.R. Babu, S.M. Babu, K. Ramamurthi, M. Arivanandhan, Effect of fluorine doping on the structural, optical and electrical properties of spray deposited cadmium stannate thin films. Mater. Sci. Semicond. Process. 16(6), 1964–1970 (2013)

    Article  CAS  Google Scholar 

  41. C.A. Vincent, The nature of semiconductivity in polycrystalline tin oxide. J. Electrochem. Soc. 119(4), 515 (1972)

    Article  CAS  Google Scholar 

  42. M. Kojima, H. Kato, M. Gatto, Blackening of tin oxide thin films heavily doped with Antimony. Philos. Mag. B 68(2), 215–222 (1993)

    Article  CAS  Google Scholar 

  43. E. Elangovan, K. Ramamurthi, Studies on optical properties of polycrystalline SnO2: Sb thin films prepared using SnCl2 precursor. Cryst. Res. Technol. 38(9), 779–784 (2003)

    Article  CAS  Google Scholar 

  44. E. Elangovan, K. Ramamurthi, Effect of substrate temperature on electrical and optical properties of spray deposited SnO2: Sb thin films. J. Optoelectron. Adv. Mater. 5(2), 415–420 (2003)

    CAS  Google Scholar 

  45. A.F. Carroll, L.H. Slack, Effects of additions to SnO2 thin films. J. Electrochem. Soc. 123(12), 1889 (1976)

    Article  CAS  Google Scholar 

  46. I.S. Mulla, H.S. Soni, V.J. Rao, A.P.B. Sinha, Deposition of improved optically selective conductive tin oxide films by spray pyrolysis. J. Mater. Sci. 21(4), 1280–1288 (1986)

    Article  CAS  Google Scholar 

  47. T.M. Hammad, N.K. Hejazy, Structural, electrical and optical properties of ATO thin films fabricated by dip coating method (2011)

  48. A.R. Babar, K.Y. Rajpure, Effect of intermittent time on structural, optoelectronic, luminescence properties of sprayed antimony doped tin oxide thin films. J. Anal. Appl. Pyrolysis 112, 214–220 (2015)

    Article  CAS  Google Scholar 

  49. G. Turgut, E.F. Keskenler, S. Aydın, E. Sönmez, S. Doğan, B. Düzgün, M. Ertuğrul, Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films. Superlattices Microstruct. 56, 107–116 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R19), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Also, the author Dr Abualnaja appreciated Taif University Researchers Supporting Project Number (TURSP-2020/267), Taif University, Taif, Saudi Arabia.

Funding

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R19), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Also, the author Dr Abualnaja appreciated Taif University Researchers Supporting Project Number (TURSP-2020/267), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

K D performed all the experimental work, collected and analyzed the data, and wrote the first draft of the manuscript. RN Approved the final version of the manuscript. MZ and RN revised the manuscript and approved the final version of the manuscript. NR, FH, AH, SAK, NSA, KMK, and KMA conceptualized and designed the work.

Corresponding authors

Correspondence to Khaoula Derrar or Roshan Nazir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrar, K., Zaabat, M., Rouabah, N. et al. Preparation of Sb:SnO2 thin films and its effect on opto-electrical properties. J Mater Sci: Mater Electron 33, 10142–10153 (2022). https://doi.org/10.1007/s10854-022-08004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08004-3

Navigation