Skip to main content
Log in

Electrical and optical properties of Co2+:SnO2 thin films deposited by spray pyrolysis technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, tin oxide (SnO2) and cobalt doped tin oxide (Co:SnO2) thin films are deposited by spray pyrolysis technique and the influence of doping concentration on the structural, morphological, electrical and optical properties of tin oxide films is analyzed and reported. X-ray diffraction pattern shows that the SnO2 and Co:SnO2 films are polycrystalline in nature and exhibit tetragonal crystal system. Co doping shifts the preferential growth orientation of SnO2 to (200) direction. Scanning electron microscopic studies show that the surface morphology of tin oxide films was effectively modified by various Co concentrations. X-ray photoelectron spectra of 5 at.% Co:SnO2 thin film reveal the presence of tin, oxygen, and cobalt. Carrier concentration and mobility of the SnO2 film decreases with increasing Co concentration and 0.5 at.% Co:SnO2 film acquires a mobility of 74 cm2/V s. The average optical transmittance of SnO2 thin film in the range of 500–800 nm increases due to Co doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Cao, X. Qiu, Y. Liang, L. Zhang, M. Zhao, Q. Zhu, Chem. Phys. Chem 7, 497 (2006)

    Google Scholar 

  2. B. Drevillion, K. Satyendra, P. Rocaicabarrocas, J.M. Siffert, Appl. Phys. Lett. 54, 2088 (1989)

    Article  Google Scholar 

  3. S.J. Laverty, H. Feng, P. Maguire, J. Electrochem. Soc. 144, 2165 (1997)

    Article  Google Scholar 

  4. M.H. Madhusudhana Reddy, A.N. Chandorkar, Thin Solid Films 349, 260 (1999)

    Article  Google Scholar 

  5. G. Frank, E. Kaur, H. Kostlin, Sol Energy Mater. 8, 387 (1983)

    Article  Google Scholar 

  6. Y. Faber, F.K. Arefi, J. Amouroux, Thin Solid Films 241, 282 (1994)

    Article  Google Scholar 

  7. T. Pisarkiewicz, T. Stapinski, Thin Solid Films 174, 277 (1989)

    Article  Google Scholar 

  8. D. Zhang, L. Tao, Z. Deng, J. Zhang, L. Chen, Mater. Chem. Phys. 100, 275 (2006)

    Article  Google Scholar 

  9. J.W. Elam, D.A. Baker, A.J. Hryn, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, J. Vac. Sci. Technol. A 26(2), 245 (2008)

    Article  Google Scholar 

  10. M.A. El Khakani, R. Dolbec, A.M. Serventi, M.C. Horrillo, M. Trudeau, R.G. Saint-Jacques, D.D. Rickerby, I. Sayago, Sens. Actuators B Chem. 77, 383 (2001)

    Article  Google Scholar 

  11. D. Debaiyoti, R. Banerjee, Thin Solid Films 147, 321 (1987)

    Article  Google Scholar 

  12. Q. Chen, Y. Qian, Z. Chen, G. Zhou, Y. Zhang, Thin Solid Films 264, 25 (1995)

    Article  Google Scholar 

  13. S.P.S. Arya, Cryst. Res. Technol. 21, K38 (1986)

    Article  Google Scholar 

  14. H. Cachet, J. Bruneaux, G. Folcher, C. Levy-Clement, C. Vard, M. Neumann-Spallart, Sol. Energy Mater. Sol. Cells. 46, 101 (1997)

    Article  Google Scholar 

  15. T. Indira Gandhi, R. Ramesh Babu, K. Ramamurthi, Mater. Sci. Semicond. Process. 16, 472 (2013)

    Article  Google Scholar 

  16. M.M.B. Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M.S. Saremi, Solid State Sci. 11, 233 (2009)

    Article  Google Scholar 

  17. M.N. Rumyantseva, A.M. Gaskov, L.I. Ryabova, J.P. Senateur, B. Chenevier, M. Labeau, Mater. Sci. Eng. B Solid 41, 333 (1996)

    Article  Google Scholar 

  18. K. Srinivas, M. Vithal, B. Sreedhar, M.M. Raja, P.V. Reddy, J. Phys. Chem. C 113, 3543 (2009)

    Article  Google Scholar 

  19. S.S. Roy, J. Podder, J. Optoelectron. Adv. Mater. 12, 1479 (2010)

    Google Scholar 

  20. Z. Jiang, N. Jiamiao, Z. Xiujian, X. Yuli, J. Wuhan. Univ. Technol. Mater. Sci. Ed. 26, 388 (2011)

    Article  Google Scholar 

  21. D.S. Han, J.H. Park, Y.J. Kang, J.W. Park, Microelectron. Reliab. 53, 1875 (2013)

    Article  Google Scholar 

  22. G. Turgut, E.F. Keskenler, S. Aydin, E. Sonmez, S. Dogan, B. Duzgun, M. Ertugrul, J. Superlattice Microstruct. 56, 107 (2013)

    Article  Google Scholar 

  23. B. Stjerna, C.G. Granqvist, J. Phys. D Appl. Phys. 26, 1011 (1993)

    Article  Google Scholar 

  24. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, C. Sankar, Mater. Sci. Semicond. Process. 16, 825 (2013)

    Article  Google Scholar 

  25. M. Weidner, J. Brotz, A. Klein, Thin Solid Films 555, 173 (2014)

    Article  Google Scholar 

  26. Y. Huang, D. Li, J. Feng, G. Li, Q. Zhang, Semicond. Sci. Technol. 24(1–5), 015003 (2009)

    Article  Google Scholar 

  27. N.F. Habubi, K.A. Mishjil, S.S. Chiad, Indian J. Phys. 87, 235 (2013)

    Article  Google Scholar 

  28. M. Mehdi, B. Mohagheghi, M.S. Saremi, Phys. B 405, 4205 (2010)

    Article  Google Scholar 

  29. G. Korotcenkov, B.K. Cho, M. Nazarov, D.Y. Noh, E.V. Kolesnikova, Curr. Appl. Phys. 10, 1123 (2010)

    Article  Google Scholar 

  30. Y. Jiang, Y. Li, M. Yan, N. Bahlawane, J. Mater. Chem. 22, 16060 (2012)

    Article  Google Scholar 

  31. E. Elangovan, K. Ramamurthi, J. Optoelectron. Adv. Mater. 5, 45 (2003)

    Google Scholar 

  32. JCPDS-International Centre for Diffraction Data, Card No. 41-1445, (1997)

  33. E. Elangovan, S.A. Shivashankar, K. Ramamurthi, J. Cryst. Growth 276, 215 (2005)

    Article  Google Scholar 

  34. M. Fantini, I. Torriani, Thin Solid Films 138, 255 (1986)

    Article  Google Scholar 

  35. X. Liu, S. Chen, M. Li, X. Wang, Thin Solid Films 515, 6744 (2007)

    Article  Google Scholar 

  36. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber Thin Solid Films 490, 36 (2005)

    Article  Google Scholar 

  37. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

  38. S.M. Rozati, E. Shadmani, J. Nanomater. Biostruct. 6, 365 (2011)

    Google Scholar 

  39. D.S.D. Amma, V.K. Vaidyan, P.K. Manoj, Mater. Chem. Phys. 93, 194 (2005)

    Article  Google Scholar 

  40. S.Y. Ali, J. Muhammad, S. Tajammul, A.D. Ali, N.U. Rehman, M.H. Aziz, J. Mater. Sci. Mater. Electron. 24, 4924 (2013)

    Google Scholar 

  41. V. Senthilkumar, P. Vickraman, J. Mater. Sci. Mater. Electron. 21, 578 (2010)

    Article  Google Scholar 

  42. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, J. Mater. Sci. Mater. Electron. 19, 868 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors T. Indira Gandhi is thankful to UGC-BSR, Govt. of India for the award of ‘Research Fellowship in Science for Meritorious Students-2010’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indira Gandhi, T., Ramesh Babu, R., Ramamurthi, K. et al. Electrical and optical properties of Co2+:SnO2 thin films deposited by spray pyrolysis technique. J Mater Sci: Mater Electron 27, 1662–1669 (2016). https://doi.org/10.1007/s10854-015-3938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3938-7

Keywords

Navigation