Skip to main content

Advertisement

Log in

Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recent work with young pigs shows that reducing dietary protein intake can improve gut function after weaning but results in inadequate provision of essential amino acids for muscle growth. Because acute administration of l-leucine stimulates protein synthesis in piglet muscle, the present study tested the hypothesis that supplementing l-leucine to a low-protein diet may maintain the activation of translation initiation factors and adequate protein synthesis in multiple organs of post-weaning pigs. Eighteen 21-day pigs (Duroc × Landrace × Yorkshire) were fed low-protein diets (16.9% crude protein) supplemented with 0, 0.27 or 0.55% l-leucine (total leucine contents in the diets being 1.34, 1.61 or 1.88%, respectively). At 35 days of age, protein synthesis was determined using the [2H] phenylalanine flooding-dose technique. Additionally, total and phosphorylated levels of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and eIF4E-binding protein-1 (4E-BP1) were measured in longissimus muscle and liver. Compared with the control group, dietary supplementation with 0.55% l-leucine for 2 weeks increased (P < 0.05): (1) the phosphorylated levels of S6K1 and 4E-BP1; (2) protein synthesis in skeletal muscle, liver, the heart, kidney, pancreas, spleen, and stomach; and (3) daily weight gain by 61%. Dietary supplementation with 0.27% l-leucine enhanced (P < 0.05) protein synthesis in proximal small intestine, kidney and pancreas. These novel findings provide a molecular basis for designing effective nutritional means to increase the efficiency of nutrient utilization for protein accretion in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CP:

Crude protein

eIF4E:

Eukaryotic initiation factor 4E

4E-BP1:

eIF4E-binding protein-1

FRS:

Fractional synthesis rate

mTOR:

Mammalian target of rapamycin

S6K1:

Ribosomal protein S6 kinase 1

References

  • Anthony JC, Anthony TG, Kimball SR et al (2000) Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr 130:139–145

    CAS  PubMed  Google Scholar 

  • Asnaghi L, Bruno P, Priulla M et al (2004) mTOR: a protein kinase switching between life and death. Pharmacol Res 50:545–549

    Article  CAS  PubMed  Google Scholar 

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  CAS  PubMed  Google Scholar 

  • Ball RO, Aherne FX (1982) Effect of diet complexity and feed restriction on the incidence and severity of diarrhea in early-weaned pigs. Can J Anim Sci 62:907–913

    Article  Google Scholar 

  • Bregendahl K, Liu L, Cant JP et al (2004) Fractional protein synthesis rates measured by an intraperitoneal injection of a flooding dose of l-[ring-2H5]phenylalanine in pigs. J Nutr 134:2722–2728

    CAS  PubMed  Google Scholar 

  • Chen L, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23

    Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  CAS  PubMed  Google Scholar 

  • Culea M, Hachey D (1995) Determination of multi-labeled serine and glycine isotopomers in human plasma by isotope dilution negative-ion chemical ionization mass spectrometry. Mass Spectrom 9:655–659

    CAS  Google Scholar 

  • Dardevet D, Sornet C, Balage M et al (2000) Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr 130:2630–2635

    CAS  PubMed  Google Scholar 

  • Dardevet D, Sornet C, Bayle G et al (2002) Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal. J Nutr 132:95–100

    CAS  PubMed  Google Scholar 

  • Davis TA, Fiorotto ML (2009) Regulation of muscle growth in neonates. Curr Opin Nutr Metab Care 12:78–85

    Article  CAS  Google Scholar 

  • Deng D, Huang RL, Li TJ et al (2007a) Nitrogen balance in barrows fed low-protein diets supplemented with essential amino acids. Livest Sci 109:220–223

    Article  Google Scholar 

  • Deng D, Li AK, Chu WY et al (2007b) Growth performance and metabolic responses in barrows fed low-protein diets supplemented with essential amino acids. Livest Sci 109:224–227

    Article  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Wu X, Bin S, Li TJ, Huang R, Liu Z, Liu Y, Ruan Z, Deng Z, Hou Y, Yin YL (2010) Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splanchnic tissues. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 94:220–226

    Google Scholar 

  • Dien LTH, Ravel JM, Shive W (1954) Some inhibitory interrelationships among leucine, isoleucine and valine. Arch Biochem Biophys 49:283–291

    Article  CAS  PubMed  Google Scholar 

  • Edmonds MS, Baker DH (1987) Amino acid excesses for young pigs: effects of excess methionine, tryptophan, threonine or leucine. J Anim Sci 64:1664–1669

    CAS  PubMed  Google Scholar 

  • Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27

    Article  CAS  PubMed  Google Scholar 

  • Escobar J, Frank JW, Suryawan A et al (2005) Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am J Physiol 288:E914–E921

    CAS  Google Scholar 

  • Fan MZ, Chiba LI, Matzat PD, Yang X, Yin YL, Mine Y, Stein HH (2006) Measuring synthesis rates of nitrogen-containing polymers by using stable isotope tracers. J Anim Sci 84(E. Suppl.):E79–E93

    Google Scholar 

  • Figueroa JL, Lewis AJ, Miller PS et al (2003) Growth, carcass traits, and plasma amino acid concentrations of gilts fed low-protein diets supplemented with amino acids including histidine, isoleucine, and valine. J Anim Sci 81:1529–1537

    CAS  PubMed  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  CAS  PubMed  Google Scholar 

  • Frank JW, Escobar J, Nguyen HV et al (2007) Oral N-carbamoylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr 137:315–319

    CAS  PubMed  Google Scholar 

  • Gatnau R, Zirnmerman DR, Nissen SL et al (1995) Effects of excess dietary leucine and leucine catabolites on growth and immune responses in weanling pigs. J Anim Sci 73:159–165

    CAS  PubMed  Google Scholar 

  • Gingras AC, Gygi SP, Raught B (1999) Regulation of 4E-BP1 phosphorylation: a novel 2-step mechanism. Gene Dev 13:1422–1437

    Article  CAS  PubMed  Google Scholar 

  • Han J, Liu YL, Fan W et al (2009) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 37:643–651

    Article  CAS  PubMed  Google Scholar 

  • Hansen JA, Knaba DA, Burgoon KG (1993) Amino acid supplementation of low-protein sorghum-soybean meal diets for 5- to 20-kilogram swine. J Anim Sci 71:452–458

    CAS  PubMed  Google Scholar 

  • Harper AE, Benton DA, Winje ME et al (1954) Leucine–isoleucine antagonism in the rat. Arch Biochem Biophys 51:523–526

    Article  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  CAS  PubMed  Google Scholar 

  • He QH, Kong XF, Wu GY et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids. doi:10.1007/s00726-010-0473-y

  • Jobgen W, Fu WJ, Gao H et al (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kang P, Toms D, Yin Y, Cheung Q, Gong J, De Lange K, Li J (2010) Epidermal growth factor-expressing Lactococcus lactis enhances intestinal development of early-weaned pigs. J Nutr 140:806–811

    Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83:500S–507S

    CAS  PubMed  Google Scholar 

  • Kong XF, Wu GY, Liao YP et al (2007) Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets. Livest Sci 108:272–275

    Article  Google Scholar 

  • Kong XF, Yin YL, He QH et al (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582

    Article  CAS  PubMed  Google Scholar 

  • Lalles JP, Bosi P, Smidt H et al (2007) Weaning—a challenge to gut physiologists. Livest Sci 108:82–93

    Article  Google Scholar 

  • Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  PubMed  Google Scholar 

  • Li TJ, Dai QZ, Yin YL et al (2008) Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs. Animal 2:723–729

    Article  CAS  Google Scholar 

  • Li XL, Bazer FW, Gao HJ et al (2009a) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  Google Scholar 

  • Li P, Kim SW, Li XL et al (2009b) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    Article  PubMed  Google Scholar 

  • Li L, Peng H, Zhang B, Wu G, Yin Y, Yang K, Li T, Li A, Hou Z, Zhang P, Liu C (2009c) The effect of dietary addition of a polysaccharide from Atractylodes macrophala koidz on growth performance, immunoglobulin concentration and IL-1βexpression in weaned pigs. J Agric Sci 147:625–631

    Google Scholar 

  • Lynch CJ, Hutson SM, Patson BJ et al (2002) Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol 283:E824–E835

    CAS  Google Scholar 

  • MacKenzie SL (1987) Gas chromatographic analysis of amino acids as the n-heptafluorobutyl isobutyl esters. Assoc Official Anal Chem 70:151–160

    CAS  Google Scholar 

  • Meijer AJ, Dubbelhuis PF (2004) Amino acid signaling and the integration of metabolism. Biochem Biophys Res Commun 313:397–403

    Article  CAS  PubMed  Google Scholar 

  • Palii SS, Kays CE, Deval C et al (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC (1999) eIF4E is regulated at multiple levels. Int J Biochem Cell Biol 31:43–57

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Gingas AC, Sonenberg N (2001) The target of rapamycin(TOR) proteins. Proc Natl Acad Sci USA 98:7037–7044

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Romanelli A, Dreisbach VC, Blenis J (2002) Characterization of phosphatidylinositol 3-kinase-dependent phosphorylation of the hydrophobic motif site Thr(389) in p70 S6 kinase 1. J Biol Chem 277:40281–40289

    Article  CAS  PubMed  Google Scholar 

  • Rotz CA (2004) Management to reduce nitrogen losses in animal production. J Anim Sci 82:119S–137S

    Google Scholar 

  • Ruan Z, Zang G, Yin YL, Li TJ, Huang RL, Kim SW, Wu GY, Deng ZY (2007) Dietary requirement of true digestible phosphorus and total calcium for growing pigs. Asian Aust J Anim Sci 20:1236–1242

    Google Scholar 

  • SAS (Statistical Analysis System Inc) (2002) SAS/STAT user’s guide, version 9. SAS Institute, Cary

    Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE et al (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–104

    Article  CAS  PubMed  Google Scholar 

  • Tan BE, Li XG, Kong XF et al (2009a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  CAS  PubMed  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2009b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Tang ZR, Yin YL, Nyachoti CM, Huang RL, Li TJ, Yang C, Yang X, Gong J, Peng J, Qi DS, Xing JJ, Sun ZH, Fan MZ (2005) Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin like growth factor-I mRNA expression in early-weaned piglets. Domest Anim Endocrinol 28:430–441

    Google Scholar 

  • Tang ZR, Yin YL, Zhang Y, Huang R, Sun Z, Li T, Chu W, Kong X, Li L, Geng M, Tu Q (2009) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Bri J Nutr 101:998–1005

    Google Scholar 

  • Tischler ME, Desautels M, Goldberg AL (1982) Does leucine, leucyl-transfer RNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 257:1613–1621

    CAS  PubMed  Google Scholar 

  • Um SH, Frigerio F, Watanabe M (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205

    Article  CAS  PubMed  Google Scholar 

  • Vary TC, Lynch CJ (2005) Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4F availability and eIF4G phosphorylation. Am J Physiol 290:E631–E642

    Google Scholar 

  • Wang X, Qiao SY, Yin YL et al (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    CAS  PubMed  Google Scholar 

  • Wang XQ, Ou DY, Yin JD et al (2009a) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    Article  PubMed  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2009b) Amino acids and gut function. Amino Acids 37:105–110

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Thompson JR (1988) The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J 255:139–144

    CAS  PubMed  Google Scholar 

  • Wu G, Thompson JR, Sedgwick G et al (1989) Formation of alanine and glutamine in chick (Gallus domesticus) skeletal muscle. Comp Biochem Physiol 93B:609–613

    CAS  Google Scholar 

  • Wu X, Ruan Z, Zhang G, Hou YQ, Yin YL, Li TJ, Huang RL, Kong XF, Chu WY, Chen LX, Hou YQ, Ruan Z, Gao B, Chen LX (2008) True digestibility of phosphorus in different resources of phosphorus ingredients in growing pigs. Asian Aust J Anim Sci 21:107

    Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010a) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Yin YL, Li TJ, Wang L, Ruan Z, Liu ZQ, Hou YQ (2010b) Dietary protein, energy and arginine affect LAT1 expression in forebrain white matter differently. Animal. doi:10.1017/S1751731110000534

  • Wu X, Ruan Z, Gao Y, Yin Y, Zhou X, Wang L, Geng M, Hou Y, Wu G (2010c) Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids. doi:10.1007/s00726-010-0538-y

  • Yin YL, Huang RL, Zhong HY (1993) Comparison of the ileorectal anastomsis and conventional method for the measurement of ileal digestibility of protein sources and mixed diets in growing pigs. Anim Feed Sci Technol 42:297–308

    Google Scholar 

  • Yin YL, Baidoo SK, Schulze H, Simmins PH (2001) Effect of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of gastrointestinal tract and nutrient digestibility of weaned pigs. Livest Prod Sci 71:97–107

    Google Scholar 

  • Yin YL, Huang C, Wu X, Li T, Huang R, Kang P, Hu Q, Chu W, Kong X (2008) Nutrient digestibility response to graded dietary levels of sodium chloride in weanling pigs. J Sci Food Agric 88:940–944

    Google Scholar 

  • Yin FG, Liu YL, Yin YL et al (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa K, Yoshino KI, Tokunaga C et al (2004) Kinase activities associated with mTOR. Curr Top Microbiol Immunol 279:271–282

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by grants from the Chinese Academy of Sciences and Knowledge Innovation Project (Kscx2-Yw-N-051), National 863 Program of China (2008AA10Z316), Research Program of State Key Laboratory of Food Science and Technology, Nanchang University (SKLF-TS-200817), Ganjiang Scholars Program at Nanchang University, National Basic Research Program of China (2009CB118806), NSFC (30901040, 30901041, 30928018, 30828025, 30771558), National Fund of Agricultural Science and Technology outcome application (2006GB24910468), National Scientific and Technological Supporting Project (2006BAD12B02-5-2 and 2006BAD12B02-5-2), Hubei Chu Tian Scholars Program, the CAS/SAFEA International Partnership Program for Creative Research Teams, the Thousand-People-Talent program at China Agricultural University, National Research Initiative Competitive Grants from the Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Yao, K., Liu, Z. et al. Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39, 1477–1486 (2010). https://doi.org/10.1007/s00726-010-0612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0612-5

Keywords

Navigation