Skip to main content
Log in

Review of effects of radiation damage on the luminescence emission of minerals, and the example of He-irradiated CePO4

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The accumulation of structural damage that is created in minerals upon corpuscular irradiation, has two apparently contrarious effects on their luminescence behaviour. First, irradiation may cause the generation of luminescent defect centres, which typically results in broad-band emissions. Such defect emissions are characteristic of low levels of radiation damage. Second, radiation damage depletes in general the luminescence of minerals, which is associated with broadenings and intensity losses of individual emission lines. Minerals that have suffered elevated levels of irradiation hence tend to be virtually non-luminescent. This review paper aims at giving an overview of the possible correlations of radiation damage and emission characteristics of minerals. After a brief, introductory summary of the damage-accumulation process and its causal corpuscular radiation, an array of examples is presented for how internal and/or external irradiation may change appreciably the emission of rock-forming and accessory minerals. As a detailed example for the complexity of changes of emissions upon damage accumulation, preliminary results of a case study of the photoluminescence (PL) of synthetic CePO4 irradiated with 8.8 MeV He ions are presented. Irradiation-induced spectral changes include (i) the initial creation, and subsequent depletion, of a broad-band, defect-related PL emission of orange colour, and (ii) gradual broadenings and intensity losses of PL lines related to electronic transitions of rare-earth elements, eventually leading to gradual loss of their splitting into multiple Stark levels (shown for the 4F3/24I9/2 transition of Nd3+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekseev AG, Amosov VN, Krasilnikov AV, Tugrainov SN, Frunze VV, Tsutskikh AY (2000) Transformation of GR1 defects in annealed natural type IIa diamonds. Tech Phys Lett 26:1–7

    Article  Google Scholar 

  • Balan E, Neuville DR, Trocellier P, Fritsch E, Muller JP, Calas G (2001) Metamictization and chemical durability of detrital zircon. Am Mineral 86:1025–1033

    Google Scholar 

  • Bhave TM, Hullavarad SS, Bhoraskar SV, Hedge SG, Kanjilal D (1999) FTIR studies of swift silicon and oxygen ion irradiated porous silicon. Nucl Instrum Meth B 156:121–124

    Article  Google Scholar 

  • Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T, Sopuck V (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580

    Article  Google Scholar 

  • Chakoumakos BC, Murakami T, Lumpkin GR, Ewing RC (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Science 236:1556–1559

    Article  Google Scholar 

  • Chakoumakos BC, Oliver BC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose. I. In situ α-decay event damage. Radiat Eff Defect S 118:393–403

    Article  Google Scholar 

  • Collins AT (2005) Optical centres produced in diamond by radiation damage. New Diam Front C Tec 17:47–61

    Google Scholar 

  • Collins AT, Kiflawi I (2009) The annealing of radiation damage in type Ia diamond. J Phys Condens Mat 21:364209

    Article  Google Scholar 

  • Devanathan R, Corrales LR, Weber WJ, Chartier A, Meis C (2006) Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol Simulat 32:1069–1077

    Article  Google Scholar 

  • Dijkman FG, van der Maas JH (1976) Dependence of bandshape and depolarization ratio on slitwidth. Appl Spectrosc 30:545–546

    Google Scholar 

  • Dooley SP, Jamieson DN, Prawer S (1993) He+ and H+ microbeam damage, swelling and annealing in diamond. Nucl Instrum Meth B 77:484–491

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang LM, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 41. Mineral Soc Am, Washington DC, pp 387–425

    Google Scholar 

  • Finch AA, Klein J (1999) The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petr 135:234–243

    Article  Google Scholar 

  • Gaft M, Shinno I, Panczer G, Reisfeld R (2002) Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Miner Petrol 76:235–246

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2005) Modern luminescence spectroscopy of minerals and materials. Springer, Berlin Heidelberg New York, 356 pp

    Google Scholar 

  • Garcia-Guinea J, Correcher V, Sanchez-Muñoz L, Finch AA, Hole DE, Townsend PD (2007) On the luminescence emission band at 340nm of stressed tectosilicate lattices. Nucl Instrum Meth A 580:648–651

    Article  Google Scholar 

  • Geisler T, Pidgeon RT (2001) Significance of radiation damage on the integral SEM cathodoluminescence intensity of zircon: an experimental annealing study. Neues Jb Miner Monat 2001:433–445

    Google Scholar 

  • Geisler T, Trachenko K, Ríos S, Dove MT, Salje EKH (2003) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. J Phys Condens Matter 15:L597–L605

    Article  Google Scholar 

  • Geisler T, Seydoux-Guillaume A-M, Poeml P, Golla-Schindler U, Berndt J, Wirth R, Pollok K, Janssen A, Putnis A (2005) Experimental hydrothermal alteration of crystalline and radiation-damaged pyrochlore. J Nucl Mater 344:17–23

    Article  Google Scholar 

  • Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineral Mag 63:179–187

    Article  Google Scholar 

  • Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence studies of feldspar minerals. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin Heidelberg, pp 245–270

    Chapter  Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Miner Petrol 71:225–250

    Article  Google Scholar 

  • Gutzov S, Peneva SK (1995) Structure and properties of hydrous zirconium oxide. Bulg Chem Commun 28:744–751

    Google Scholar 

  • Hanchar JM, Hoskin PWO, Jackson SG, Hinton RW, Thibault Y, Finch RJ, Wolf S, Watson EB, Hemming S, Hanson B, Lindstrom DJ (1997) Rare earth elements and the Ce anomaly in terrestrial zircons. EOS Trans Am Geophys Union 78:F783

    Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AM (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Cryst 8:291–300

    Article  Google Scholar 

  • Kagi H, Sato S, Akagi T, Kanda H (2007) Generation history of carbonado inferred from photoluminescence spectra, cathodoluminescence imaging, and carbon-isotopic composition. Am Mineral 92:217–224

    Article  Google Scholar 

  • Kayama M, Nishido H, Toyoda S, Komuro K, Ninagawa K (2011) Radiation effects on cathodoluminescence of albite. Am Mineral 96:1238–1247

    Article  Google Scholar 

  • Kennedy AK, Kamo SL, Nasdala L, Timms NE (2010) Greenville skarn titanite: potential reference material for SIMS U–Th–Pb analysis. Can Mineral 48:1423–1443

    Google Scholar 

  • Komuro K, Horikawa Y, Toyoda S (2002) Development of radiation-damage halos in low-quartz: cathodoluminescence measurement after He+ ion implantation. Miner Petrol 76:261–266

    Article  Google Scholar 

  • Krickl R, Nasdala L, Götze J, Grambole D, Wirth R (2008) Alpha-irradiation effects in SiO2. Eur J Mineral 20:517–522

    Article  Google Scholar 

  • Krickl R, Götze J, Grambole D, Kaindl R (2009a) Radiohaloes in feldspar group minerals. Hallesches Jahrb Geowiss 31:134

    Google Scholar 

  • Krickl R, Nasdala L, Grambole D, Kaindl R (2009b) Radio-induced alteration in cordierite—implications for petrology, gemmology and material science. Geophys Res Abstr 11 (Eur Geosciences Union General Assembly, Wien, 2009), EGU2009–2657–2

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo–Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Ac 62:2509–2520

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Zinkle SJ, Wang S-X, Wang L-M, Ewing RC (1999) Effects of dose rate and temperature on the crystalline-to-metamict transformation in the ABO4 orthosilicates. Can Mineral 37:207–221

    Google Scholar 

  • Mendelssohn MJ, Milledge HJ, Vance ER, Nave E, Woods PA (1979) Internal radioactive haloes in diamond. Diamond Res 1979 (DeBeers Indust Diam Div), pp 31–36

  • Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sediment Petrol 60:53–58

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nagabhushana H, Prashantha CS, Lakshminarasappa BN, Singh F (2008) Ionoluminescence and photoluminescence studies of Ag8+ ion irradiated kyanite. J Luminesc 128:7–10

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petr 141:125–144

    Article  Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Nasdala L, Hanchar JM, Kronz A, Whitehouse MJ (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103

    Article  Google Scholar 

  • Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006a) Alpha particle haloes in chlorite and cordierite. Miner Petrol 86:1–27

    Article  Google Scholar 

  • Nasdala L, Kronz A, Hanchar JM, Tichomirowa M, Davis DD, Hofmeister W (2006b) Effects of natural radiation damage on back-scattered electron images of single-crystals of minerals. Am Mineral 91:1739–1746

    Article  Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) Alteration of radiation-damaged zircon and the related phenomenon of deficient electron microprobe totals. Geochim Cosmochim Ac 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Grötzschel R, Probst S, Bleisteiner B (2010a) Irradiation damage in monazite (CePO4): an example to establish the limits of Raman confocality and depth resolution. Can Mineral 48:351–359

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010b) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Nasdala L, Grambole D, Götze J, Kempe U, Váczi T (2011) Helium irradiation study on zircon. Contrib Mineral Petr 161:777–789

    Article  Google Scholar 

  • Nasdala L, Grambole D, Wildner M, Gigler AM, Hainschwang T, Zaitsev AM, Harris JW, Milledge J, Schulze DJ, Hofmeister W, Balmer WA (2013) Radio-colouration of diamond: a spectroscopic study. Contrib Mineral Petr. doi:10.1007/s00410-012-0838-1, published online

  • Okumura T, Nishido H, Toyoda S, Kaneko T, Kosugi S, Sawada Y (2008) Evaluation of radiation-damage halos in quartz by cathodoluminescence as a geochronological tool. Quat Geochronol 3:342–345

    Article  Google Scholar 

  • Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532

    Article  Google Scholar 

  • Ramseyer K, Baumann J, Matter A, Mullis J (1988) Cathodoluminescence colours of alpha-quartz. Mineral Mag 52:669–677

    Article  Google Scholar 

  • Ruschel K, Nasdala L, Rhede D, Wirth R, Lengauer CL, Libowitzky E (2010) Chemical alteration patterns in metamict fergusonite. Eur J Mineral 22:425–433

    Article  Google Scholar 

  • Ruschel K, Nasdala L, Kronz A, Hanchar JM, Többens DM, Škoda R, Finger F, Möller A (2012) A Raman spectroscopic study on the structural disorder of monazite–(Ce). Miner Petrol 105:41–55

    Article  Google Scholar 

  • Sahama TG (1981) Growth structure in Ceylon zircon. Bull Mineral 104:89–94

    Google Scholar 

  • Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Mineral 84:1107–1116

    Google Scholar 

  • Schertl H-P, Neuser RD, Sobolev NV, Shatsky VS (2004) UHP-metamorphic rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan: new insights using cathodoluminescence petrography. Eur J Mineral 16:49–57

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:240–253

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Ingrin J (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. Eur J Mineral 19:7–14

    Article  Google Scholar 

  • Shpak AP, Grechanovsky OY, Litovchenko AS, Sayenko SY (2007) Molecular dynamics simulation of displacement cascades in zircon. Probl At Sci Tech 2007(2):29–32 (in Russian)

    Google Scholar 

  • Siegel GH, Marrone MJ (1981) Photoluminescence in as-drawn and irradiated silica optical fibres: an assessment of the role of non-bridging oxygen defect centers. J Non-Cryst Solids 45:235–247

    Article  Google Scholar 

  • Smith JV, Stenstrom RC (1965) Electron-excited luminescence as a petrologic tool. J Geol 73:627–635

    Article  Google Scholar 

  • Trachenko K, Dove MT, Salje EKH (2002) Structural changes in zircon under a-decay irradiation. Phys Rev B 65:180102(R)

    Google Scholar 

  • Trachenko K, Dove MT, Geisler T, Todorov I, Smith B (2004) Radiation damage effects and percolation theory. J Phys Condens Mat 16:S2623–S2627

    Article  Google Scholar 

  • Tringe JW, Felter TE, Talley CE, Morse JD, Stevens CG, Castelaz JM, Wetzel C (2007) Radiation damage mechanisms for luminescence in Eu-doped GaN. J Appl Phys 101:054902

    Article  Google Scholar 

  • Vance ER, Milledge HJ (1972) Natural and laboratory α-particle irradiation of diamond. Mineral Mag 38:878–881

    Article  Google Scholar 

  • Vance ER, Harris JW, Milledge HJ (1973) Possible origins of α-damage in diamonds from kimberlite and alluvial sources. Mineral Mag 39:349–360

    Article  Google Scholar 

  • Vaz JE, Senftle FE (1971) Thermoluminescence study of the natural radiation damage in zircon. J Geophys Res 76:2038–2050

    Article  Google Scholar 

  • Wang LM, Gong WL, Wang SX, Ewing RC (1999) Comparison of ion-beam irradiation effects in X2YO4 compounds. J Am Ceram Soc 82:3321–3329

    Article  Google Scholar 

  • Wasiliewski PJ, Senftle FE, Vaz JE, Thorpe AN, Alexander CC (1973) A study of the natural α-recoil damage in zircon by infrared spectra. Radiat Eff Defect S 17:191–199

    Article  Google Scholar 

  • Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Catlow CRA, Dias de la Rubia T, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Article  Google Scholar 

  • Weikusat C, Miletich R, Glasmacher UA, Trautmann C, Neumann R (2010) Heavy-ion irradiation on crystallographically oriented cordierite and the conversion of molecular CO2 to CO: a Raman spectroscopic study. Phys Chem Miner 37:417–424

    Article  Google Scholar 

  • Xue LH, Gong WL (2000) A study on Raman and photoluminescence spectra of the aeschynite group minerals. Spectrosc Spect Anal 20:827–829 (in Chinese)

    Google Scholar 

  • Zaitsev AM (2001) Optical properties of diamond. Springer, Berlin Heidelberg New York, 502 p

    Book  Google Scholar 

  • Ziegler JF (1999) Stopping of energetic light ions in elemental matter. J Appl Phys 85:1249–1272

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. In: Ziegler JF (ed) The stopping and ranges of ions in matter, vol 1. Pergamon Press, New York

    Google Scholar 

  • Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM—The Stopping and Range of Ions in Matter. SRIM Co. (ISBN 0–9654207–1–X)

Download references

Acknowledgments

Thanks are due to D.W. Davis, J. Götze, J.M. Hanchar, J.W. Harris, A. Kronz, A. Massanek, A. Möller, I.V. Pekov, H.-P. Schertl, and C. Schnier for providing samples, spectra, and images; and to K. Trachenko for the permission to publish Fig. 2. Sample preparation was done by A. Wagner. We are grateful to two anonymous reviewers for their constructive comments. Financial support was provided by the European Commission through Research Infrastructures Transnational Access (RITA) grant no. 025646, and the Austrian Science Fund (FWF), grants P20028–N10 and P24448–N19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Nasdala.

Additional information

Editorial handling: J. Götze

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasdala, L., Grambole, D. & Ruschel, K. Review of effects of radiation damage on the luminescence emission of minerals, and the example of He-irradiated CePO4 . Miner Petrol 107, 441–454 (2013). https://doi.org/10.1007/s00710-013-0274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0274-6

Keywords

Navigation