Skip to main content
Log in

Helium irradiation study on zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Synthetic ZrSiO4 and (mildly to strongly radiation-damaged) natural zircon samples were irradiated with 8.8 MeV 4He2+ ions (fluences in the range 1 × 1013–5 × 1016 ions/cm2). For comparison, an additional irradiation experiment was done with 30 MeV 16O6+ ions (fluence 1 × 1015 ions/cm2). The light-ion irradiation resulted in the generation of new (synthetic ZrSiO4) or additional (mildly to strongly metamict natural samples) damage. The maximum extent of the damage is observed in a shallow depth range approximately 32–33 μm (8.8 MeV He) and ~12 μm (30 MeV O) below the sample surface, i.e. near the end of the ion trajectories. These depth values, and the observed damage distribution, correspond well to defect distribution patterns as predicted by Monte Carlo simulations. The irradiation damage is recognised from the notable broadening of Raman-active vibrational modes, lowered interference colours (i.e. decreased birefringence), and changes in the optical activity (i.e. luminescence emission). At very low damage levels, a broad-band yellow emission centre is generated whereas at elevated damage levels, this centre is suppressed and samples experience a general decrease in their emission intensity. Most remarkably, there is no indication of notable structural recovery in pre-damaged natural zircon as induced by the light-ion irradiation, which questions the relevance of alpha-assisted annealing of radiation damage in natural zircon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babsail L, Hamelin N, Townsend PD (1991) Helium-ion implanted waveguides in zircon. Nucl Instrum Methods B 59–60:1219–1222

    Article  Google Scholar 

  • Balan E, Neuville DR, Trocellier P, Fritsch E, Muller JP, Calas G (2001) Metamictization and chemical durability of detrital zircon. Am Miner 86:1025–1033

    Google Scholar 

  • Can N, Townsend PD (1994) Anomalous annealing of zircon optical waveguides formed by implantation of helium ions. Radiat Eff Defect S 128:215–220

    Article  Google Scholar 

  • Chakoumakos BC, Murakami T, Lumpkin GR, Ewing RC (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Science 236:1556–1559

    Article  Google Scholar 

  • Chakoumakos BC, Oliver BC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose. I. In situ α-decay event damage. Radiat Eff Defect S 118:393–403

    Article  Google Scholar 

  • Chaumont J, Soulet S, Krupa JC, Carpena J (2002) Competition between disorder creation and annealing in fluorapatite nuclear waste forms. J Nucl Mater 301:122–128

    Article  Google Scholar 

  • Davis DW, Williams IS, Krogh TE (2003) Historical development of zircon geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 145–181

    Google Scholar 

  • Dawson P, Hargreave MM, Wilkinson GF (1971) The vibrational spectrum of zircon (ZrSiO4). J Phys C Solid State 4:240–256

    Article  Google Scholar 

  • Devanathan R (2009) Radiation damage evolution in ceramics. Nucl Instrum Methods B 267:3017–3021

    Article  Google Scholar 

  • Devanathan R, Corrales LR, Weber WJ, Chartier A, Meis C (2006) Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol Simul 32:1069–1077

    Article  Google Scholar 

  • Ewing RC (2001) The design and evaluation of nuclear-waste forms: clues from mineralogy. Can Miner 39:697–715

    Article  Google Scholar 

  • Ewing RC, Weber WJ, Clinard FW Jr (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Progr Nucl Energy 29:63–127

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang LM, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 41. Mineral Soc Am, Washington, pp 387–425

    Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 1–25

    Google Scholar 

  • Fourdrin C, Balan E, Allard T, Boukari C, Calas G (2009) Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Phys Chem Miner 36:291–299

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000) Laser-induced luminescence of rare-earth elements in natural zircon. J Alloy Compd 300–301:267–274

    Article  Google Scholar 

  • Gaft M, Shinno I, Panczer G, Reisfeld R (2002) Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Miner Petrol 76:235–246

    Article  Google Scholar 

  • Geisler T, Trachenko K, Ríos S, Dove MT, Salje EKH (2003) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. J Phys Condens Matter 15:L597–L605

    Article  Google Scholar 

  • Gentry RV (1974) Radiohalos in a radiochronological and cosmological perspective. Science 184:62–66

    Article  Google Scholar 

  • Götze J, Kempe U (2008) A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Miner Mag 72:909–924

    Article  Google Scholar 

  • Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Miner Mag 63:179–187

    Article  Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Miner Petrol 71:225–250

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am Miner 86:667–680

    Google Scholar 

  • Heera V, Stoemenos J, Kögler R, Skorupa W (1995) Amorphization and recrystallization of 6H-SiC by ion-beam irradiation. J Appl Phys 77:2999–3009

    Article  Google Scholar 

  • Hendricks BWH, Redfield TF (2005) Apatite fission track and (U-Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite. Earth Planet Sci Lett 236:443–458

    Article  Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Cryst 8:291–300

    Article  Google Scholar 

  • Hurley PM (1954) The helium age method and the distribution and migration of helium in rocks. In: Faul H (ed) Nuclear geology. Wiley, New York, pp 301–329

    Google Scholar 

  • Irmer G (1985) Zum Einfluß der Apparatefunktion auf die Bestimmung von Streuquerschnitten und Lebensdauern aus optischen Phononenspektren. Exp Tech Phys 33:501–506

    Google Scholar 

  • Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U–Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Heidelberg, pp 415–455

    Google Scholar 

  • Krasnobayev AA, Votyakov SL, Krokhalev VY (1988) Spectroscopy of zircons (properties, geological applications). Nauka, Moscow, 150 pp (in Russian)

  • Krickl R, Nasdala L, Götze J, Grambole D, Wirth R (2008) Alpha-irradiation effects in SiO2. Eur J Miner 20:517–522

    Article  Google Scholar 

  • Kröner A, Kehelpannala KVW, Kriegsman LM (1994) Origin of compositional layering and mechanism of crustal thickening in the high-grade gneiss terrain of Sri Lanka. Precambrian Res 66:21–37

    Article  Google Scholar 

  • Lian J, Ríos S, Boather LA, Wang LM, Ewing RC (2003) Microstructural evolution and nanocrystal formation in Pb+-implanted ZrSiO4 single crystals. J Appl Phys 94:5695–5703

    Article  Google Scholar 

  • Lumpkin GR (2006) Ceramic waste forms from actinides. Elements 2:365–372

    Article  Google Scholar 

  • Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66

    Article  Google Scholar 

  • Meldrum A, Boather LA, Ewing RC (1997) Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J Mater Res 12:1816–1827

    Article  Google Scholar 

  • Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sediment Petrol 60:53–58

    Google Scholar 

  • Moazed C, Overbey R, Spector RM (1975) Precise determination of critical features in radiohalo-type coloration of biotite. Nature 258:315–317

    Article  Google Scholar 

  • Moreira PAFP, Devanathan R, Yu J, Weber WJ (2009) Molecular-dynamics simulation of threshold displacement energies in zircon. Nucl Instrum Methods B 267:3431–3436

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay damage in zircon. Am Miner 76:1510–1532

    Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircons: a Raman spectroscopic study. Eur J Miner 7:471–478

    Google Scholar 

  • Nasdala L, Pidgeon RT, Wolf D, Irmer G (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Miner Petrol 62:1–27

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001a) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Miner Petrol 141:125–144

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Andrut M, Wirth R, Blaum P (2001b) The nature of radiohaloes in biotite: experimental studies and modeling. Am Miner 86:498–512

    Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 427–467

    Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Miner 89:219–231

    Google Scholar 

  • Nasdala L, Hanchar JM, Kronz A, Whitehouse MJ (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103

    Article  Google Scholar 

  • Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Miner Petrol 86:1–27

    Article  Google Scholar 

  • Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A, Valley JW (2008) Zircon M257—a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanal Res 32:247–265

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1996) Kathodolumineszenz: Methodik und Anwendung. Zbl Geo Pal 1995(1/2):287–306

    Google Scholar 

  • Nicholas JV (1967) Origin of the luminescence in natural zircon. Nature 215:1476

    Article  Google Scholar 

  • Oliver WC, McCallum JC, Chakoumakos BC, Boatner LA (1994) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: II. Pb-ion implantation damage. Radiat Eff Defect S 132:131–141

    Article  Google Scholar 

  • Ouchani S, Dran J-C, Chaumont J (1997) Evidence of ionization annealing upon helium-ion irradiation of pre-damaged fluorapatite. Nucl Instrum Methods B 132:447–451

    Article  Google Scholar 

  • Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532

    Article  Google Scholar 

  • Özkan H (1976) Effect of nuclear radiation on the elastic moduli of zircon. J Appl Phys 47:4772–4779

    Article  Google Scholar 

  • Pal DC (2004) Concentric rings of radioactive halo in chlorite, Turamdih uranium deposit, Singhbhum Shear Zone, Eastern India: a possible result of 238U chain decay. Curr Sci India 87:662–667

    Google Scholar 

  • Radlinski AP, Claoue-Long J, Hinde AL, Radlinska EZ, Lin JS (2003) Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals. Phys Chem Miner 30:631–640

    Article  Google Scholar 

  • Raineri V, Galvagno G, Rimini E, Biersack JP, Nakagawa ST, La Ferla A, Carnera A (1991) Channelling implants of B ions into 〈100〉 silicon surfaces. Radiat Eff Defect S 116:211–217

    Article  Google Scholar 

  • Reiners PW (2005) Zircon (U–Th)/He thermochronometry. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications. Rev Mineral Geochem, vol 58. Mineral Soc Am, Washington, pp 151–179

    Google Scholar 

  • Rémond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schoverer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microsc 6:23–68

    Google Scholar 

  • Rizvanova NG, Levchenkov OA, Belous AE, Bezmen NI, Maslenikov AV, Komarov AN, Makeev AF, Levskiy LK (2000) Zircon reaction and stability of the U–Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contrib Miner Petrol 139:101–114

    Article  Google Scholar 

  • Sahama TG (1981) Growth structure in Ceylon zircon. Bull Minér 104:89–94

    Google Scholar 

  • Sahoo PK, Gąsiorek S, Lieb KP, Arstila K, Keinonen J (2005) Achieving epitaxy and intense luminescence in Ge/Rb-implanted α-quartz. Appl Phys Lett 87:021105

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Nasdala L, Gottschalk M, Montel J-M, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:240–253

    Article  Google Scholar 

  • Shpak AP, Grechanovsky OY, Litovchenko AS, Sayenko SY (2007) Molecular dynamics simulation of displacement cascades in zircon. Probl At Sci Tech 2007(2):29–32 (in Russian)

    Google Scholar 

  • Silver LT, Deutsch S (1963) Uranium–lead isotope variations in zircons: a case study. J Geol 71:721–758

    Article  Google Scholar 

  • Söderlund P, Juez-Larré J, Page LM, Dunai T (2005) Extending the time range of apatite (U–Th)/He thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden. Earth Planet Sci Lett 239:266–275

    Article  Google Scholar 

  • Som T, Ghatak J, Sinha OP, Sivakumar R, Kanjilal D (2008) Recrystallization of ion-irradiated germanium due to intense electronic interaction. J Appl Phys 103:123532-1–123532-5

    Article  Google Scholar 

  • Taraschan A (1978) Luminescence of minerals. Naukova Dumka, Kiev, 296 pp (in Russian)

  • Vance ER, Anderson BW (1972) Study of metamict Ceylon zircons. Miner Mag 38:605–613

    Article  Google Scholar 

  • Verma P, Abbi SC, Jain KP (1995) Raman-scattering probe of anharmonic effects in GaAs. Phys Rev B 51:16660–16667

    Article  Google Scholar 

  • Voznyak DK, Pavlishin VI, Bugaenko VN, Galaburda Yu (1996) Nature, genetic and geochronological significance of radiogenic haloes in minerals from the Polokhovskoe deposit (Ukrainian Shield). Miner Zh 18:3–7

    Google Scholar 

  • Wasiliewski PJ, Senftle FE, Vaz JE, Thorpe AN, Alexander CC (1973) A study of the natural α-recoil damage in zircon by infrared spectra. Radiat Eff Defect S 17:191–199

    Article  Google Scholar 

  • Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Catlow CRA, Dias de la Rubia T, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Article  Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Lennox H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Mat 12:1915–1925

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. In: Ziegler JF (ed) The stopping and ranges of ions in matter, vol 1. Pergamon Press, New York

    Google Scholar 

Download references

Acknowledgments

Samples investigated in this study were kindly made available by J.M. Hanchar (synthetic ZrSiO4), W. Hofmeister (M144, M146, N17), and A.K. Kennedy (G168). Thanks are due to A. Wagner for the excellent sample preparation. We are indebted to W. Hofmeister and T. Häger for the opportunity to use the confocal Raman spectrometer of the Institute for Gemstone Research, Mainz, Germany. Constructive comments of two anonymous experts are gratefully acknowledged. This research was supported financially by the European Commission through contract no. MEXC-CT-2005-024878 and Research Infrastructures Transnational Access (RITA) grant no. 025646, and the Austrian Science Fund (FWF), grant P20028-N10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Nasdala.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasdala, L., Grambole, D., Götze, J. et al. Helium irradiation study on zircon. Contrib Mineral Petrol 161, 777–789 (2011). https://doi.org/10.1007/s00410-010-0562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0562-7

Keywords

Navigation