Skip to main content
Log in

A Raman spectroscopic study on the structural disorder of monazite–(Ce)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study addresses whether Raman spectra can be used to estimate the degree of accumulated radiation damage in monazite-(Ce) samples whose chemical composition was previously determined. Our results indicate that the degree of disorder in monazite–(Ce), as observed from increasing Raman band broadening, generally depends on both the structural state (i.e., radiation damage) and the chemical composition (i.e., incorporation of non-formula elements). The chemical effects were studied on synthetic orthophosphates grown using the Li-Mo flux method, and non radiation-damaged analogues of the naturally radiation-damaged monazite–(Ce) samples, produced by dry annealing. We found that the “chemical” Raman-band broadening of natural monazite–(Ce) can be predicted by the empirical formula,

$$ {\hbox{FWHM}} {\hbox{[c}}{{\hbox{m}}^{ - {1}}}{]} = {3}{.95} + {26}{.66} \times {\hbox{(Th}} + {\hbox{U}} + {\hbox{Ca}} + {\hbox{Pb)}} {\hbox{[apfu]}} $$

where, FWHM = full width at half maximum of the main Raman band of monazite–(Ce) (i.e., the symmetric PO4 stretching near 970 cm−1), and (Th+U+Ca+Pb) = sum of the four elements in apfu (atoms per formula unit). Provided the chemical composition of a natural monazite–(Ce) is known, this “chemical band broadening” can be used to estimate the degree of structural radiation damage from the observed FWHM of the ν1(PO4) band of that particular sample using Raman spectroscopy. Our annealing studies on a wide range of monazite–(Ce) reference materials and other monazite–(Ce) samples confirmed that this mineral virtually never becomes highly radiation damaged. Potential advantages and the practical use of the proposed method in the Earth sciences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alagna KE, Petrelli M, Perugini D, Poli G (2008) Micro-analytical zircon and monazite U-Pb isotope dating by laser ablation-inductively coupled plasma-quadrupole mass spectrometry. Geostand Geoanal Res 32:103–120

    Article  Google Scholar 

  • Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 261–315

    Google Scholar 

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. J Petrol 57:521–552

    Article  Google Scholar 

  • Beall GW, Boatner LA, Mullica DF, Milligan WO (1981) The structure of cerium orthophosphate, a synthetic analogue of monazite. J Inorg Nucl Chem 43:101–105

    Article  Google Scholar 

  • Begun GM, Beall GW, Boatner LA, Gregor WJ (1981) Raman spectra of the rare earth orthophosphates. J Raman Spectrosc 11:273–278

    Article  Google Scholar 

  • Bergman L, Bremser MD, Perry WG, Davis RF, Dutta M, Nemanich RJ (1997) Raman analysis of the configurational disorder in AlxGa1-xN films. Appl Phys Lett 71:2157–2159

    Article  Google Scholar 

  • Boatner LA, Sales BC (1988) Monazite. In: Lutze W, Ewing RC (eds) Radioactive waste forms for the future. Elsevier, New York, pp 495–564

    Google Scholar 

  • Bowles JFW, Jobbins EA, Young BR (1980) A re-examination of cheralite. Mineral Mag 43:885–888

    Article  Google Scholar 

  • Boyce JW, Hodges KV, Olszewski WJ, Jercinovic MJ, Carpenter BD, Reiners PW (2006) Laser microprobe (U-Th)/He geochronology. Geochim Cosmochim Ac 70:3031–3039

    Article  Google Scholar 

  • Bregiroux D, Terra O, Audubert F, Dacheux N, Serin V, Podor R, Bernache-Assollant D (2007) Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg Chem 46:10372–10382

    Article  Google Scholar 

  • Burakov BE, Yagovkina MA, Zamoryanskaya MV, Petrova MA, Domracheva YV, Kolesnikova V, Nikolaeva LD, Garbuzov VM, Kitsay AA, Zirlin VA (2008) Behavior of actinide host-phases under self-irradiation: zircon, pyrochlore, monazite, and cubic Zirconia doped with Pu-238. In: Krivovichev SV (ed) Minerals as advanced materials I, 1st edn. Heidelberg, Springer Berlin, pp 209–217

    Chapter  Google Scholar 

  • Chakoumakos BC, Sales BC, Boatner LA (1990) Alpha-decay-induced condensation of phosphate anions in a mineral. Am Mineral 75:1447–1450

    Google Scholar 

  • Clavier N, Podor R, Dacheux N (2011) Crystal chemistry of the monazite structure. J Eur Ceram Soc 31:941–976

    Article  Google Scholar 

  • Dijkman FG, van der Maas JH (1976) Dependence of bandshape and depolarization ratio on slitwidth. Appl Spectrosc 30:545–546

    Article  Google Scholar 

  • Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascala F, Civalleri B, Doll K, Harrison NM, Busch IJ, D’Arco P, Llunell M (2009) CRYSTAL09 – A computational tool for solid state chemistry and physiscs. University of Torino, Italy

    Google Scholar 

  • Dumond G, McLean N, Williams ML, Jercinovic MJ, Bowring SA (2008) High-resolution dating of granite petrogenesis and deformation in a lower crustal shear zone: Athabasca granulite terrane, western Canadian Shield. Chem Geol 254:175–196

    Article  Google Scholar 

  • Ertl A, Schuster R, Hughes JM, Ludwig T, Meyer H-P, Finger F, Dyar MD, Ruschel K, Rossman GR, Klötzli U, Brandstätter F, Lengauer CL, Tillmanns E (2012) Li-bearing tourmalines in Variscan pegmatites from the Moldanubian nappes, Lower Austria. Eur J Mineral doi:10.1127/0935-1221/2012/0024-2203

  • Ewing RC (1994) The metamict state: 1993 – the centennial. Nucl Instrum Meth B 91:22–29

    Article  Google Scholar 

  • Ewing RC (1999) Nuclear waste forms for actinides. P Natl Acad Sci USA 96:3432–3439

    Article  Google Scholar 

  • Falkovsky LA (2001) Width of optical phonons: influence of defects of various geometry. Phys Rev B 64:024301

    Article  Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:1–25

  • Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U-Pb and Th-Pb dating of monazite. Chem Geol 270:31–44

    Article  Google Scholar 

  • Förster H-J (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: the monazite-(Ce)-brabantite solid solution series. Am Mineral 83:259–272

    Google Scholar 

  • Garver JI, Reiners PW, Walker LJ, Ramage JT, Perry SE (2005) Implications for timing of Andean uplift from thermal resetting of radiation-damaged zircon in the cordillera Huayhuash, Northern Peru. J Geol 113:117–138

    Article  Google Scholar 

  • Gasanly NM (2003) Effect of crystal disorder on linewidth of the Raman modes in GaS1–xSex layered mixed crystals. Cryst Res Technol 38:962–967

    Article  Google Scholar 

  • Geisler T, Pidgeon RT (2002) Raman scattering from metamict zircon: comments on “Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage” by Nasdala et al. 2001 (Contribution to Mineralogy and Petrology 141: 125–144). Contrib Mineral Petr 143:759–755

    Google Scholar 

  • Geisler T, Pidgeon RT, van Bronswijk W, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13:1163–1176

    Article  Google Scholar 

  • Geisler T, Burakov BE, Zirlin V, Nikolaeva L, Pöml P (2005) A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava”. Eur J Mineral 17:883–894

    Article  Google Scholar 

  • Goncalves P, Williams ML, Jercinovic MJ (2005) Electron-microprobe age mapping of monazite. Am Mineral 90:578–585

    Article  Google Scholar 

  • Gouadec G, Colomban P (2007) Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Ch 53:1–56

    Article  Google Scholar 

  • Gramaccioli CM, Segalstad TV (1978) A uranium- and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy. Am Mineral 63:757–761

    Google Scholar 

  • Gucsik A, Zhang M, Koeberl C, Salje EKH, Redfern SAT, Pruneda JM (2004) Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures. Mineral Mag 68:801–811

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AM (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Harrison TM, Catlos EJ, Montel J-M (2002) U–Th–Pb dating of Phosphate Minerals. In: Kohn ML, Rakovan J, and Hughes JM (eds) Phosphates. Rev Mineral Geochem 48:523–558

  • Hobart DE, Begun GM, Haire RG, Hellwege HE (1983) Raman spectra of the transplutonium orthophosphates and trimetaphosphates. J Raman Spectrosc 14:59–62

    Article  Google Scholar 

  • Horie K, Hidaka H, Gauthier-Lafaye F (2006) Elemental distribution in zircon: alteration and radiation-damage effects. Phys Chem Earth 31:587–592

    Article  Google Scholar 

  • Hoskin PWO, Rodgers KA (1996) Raman spectral shift in the isomorphous series (Zr1-xHfx)SiO4. Eur J Solid State Inorg Chem 33:1111–1121

    Google Scholar 

  • Kanemitsu Y, Uto H, Masumoto Y, Masumoto T, Futagi T, Mimura H (1993) Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. Phys Rev B 48:2827–2830

    Article  Google Scholar 

  • Kuiper YD (2005) Isotopic age constraints from electron microprobe U-Th-Pb dates, using a three-dimensional concordia diagram. Am Mineral 90:586–591

    Article  Google Scholar 

  • Lenting C, Geisler T, Gerdes A, Kooijman E, Scherer EE, Zeh A (2010) The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. Am Mineral 95:1343–1348

    Article  Google Scholar 

  • Linthout K (2007) Tripartite division of the system 2 REEPO4 – CaTh(PO4)2–2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can Mineral 45:503–508

    Article  Google Scholar 

  • Lumpkin GR (2001) Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J Nucl Mater 289:136–166

    Article  Google Scholar 

  • Meldrum A, Wang LM, Ewing RC (1996) Ion beam induced amorphization of monazite. Nucl Instrum Meth B 116:220–224

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Ac 62:2509–2520

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Ewing RC (2000) A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral Mag 64:185–194

    Article  Google Scholar 

  • Mohanan K, Sharma SK, Bishop FC (1993) A Raman spectral study of forsterite-monticellite solid solutions. Am Mineral 78:42–48

    Google Scholar 

  • Möller A, Mezger K, Schenk V (2000) U-Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precamb Res 104:123–146

    Article  Google Scholar 

  • Montel J-M (2011) Minerals and design of new waste forms for conditioning nuclear waste. CR Geosci 343:230–236

    Article  Google Scholar 

  • Montel J-M, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Google Scholar 

  • Nasdala L, Pidgeon RT, Wolf D, Irmer G (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Miner Petrol 62:1–27

    Article  Google Scholar 

  • Nasdala L, Finger F, Kinny P (1999) Can monazite become metamict? Eur J Mineral 11(Beih 1):164

    Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petr 141:125–144

    Article  Google Scholar 

  • Nasdala L, Irmer G, Jonckheere R (2002) Radiation damage ages: Practical concept or impractical vision? – Reply to two comments on “ Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage”, and further discussion. Contrib Mineral Petr 143:758–765

    Article  Google Scholar 

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:427–468

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Ac 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Grötzschel R, Probst S, Bleisteiner B (2010a) Irradiation damage in monazite-(Ce): an example to establish the limits of Raman confocality and depth resolution. Can Mineral 48:351–359

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010b) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Nasdala L, Ruschel K, Rhede D, Wirth R, Kerschhofer-Wallner L, Kennedy AK, Kinny PD, Finger F, Groschopf N (2010c) Phase decomposition upon alteration of radiation-damaged monazite–(Ce) from Moss, Østfold, Norway. Chimia 64:705–711

    Article  Google Scholar 

  • Nasdala L, Grambole D, Götze J, Kempe U, Váczi T (2011) Helium irradiation study on zircon. Contrib Mineral Petr 161:777–789

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Mineral 80:21–26

    Google Scholar 

  • Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998) U-Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta U Carol Geol 42:309–310

    Google Scholar 

  • Oelkers EH, Poitrasson F (2002) An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. Chem Geol 191:73–87

    Article  Google Scholar 

  • Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129

    Article  Google Scholar 

  • Ouchani S, Dran J-C, Chaumont J (1997) Evidence of ionization annealing upon helium-ion irradiation of pre-damaged fluorapatite. Nucl Instrum Meth B 132:447–451

    Article  Google Scholar 

  • Overstreet WC (1967) The geologic occurrence of monazite. Geol Surv Prof Paper 530:114–118

    Google Scholar 

  • Pačevski A, Libowitzky E, Žinković P, Dimitrijević R, Cvetković L (2008) Copper-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia: mineral inclusions or true solid-solution? Can Mineral 46:249–261

    Article  Google Scholar 

  • Parrish RR (1990) U−Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Article  Google Scholar 

  • Pascale F, Zicovich-Wilson CM, Lopez F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897

    Article  Google Scholar 

  • Paschoal CWA, Ayala AP, Guedes I, Loong C-K, Boatner LA (2002) Raman phonons in RPO4 crystals. Proceedings of XVIIIth International Conference on Raman Spectroscopy, 25–30 August, 2002 Budapest, Hungary 18:577–578

  • Podor R (1995) Raman spectra of the actinide-bearing monazites. Eur J Mineral 7:1353–1360

    Google Scholar 

  • Poon WCK, Putnis A, Salje E (1990) Structural states of Mg cordierite: IV. Raman spectroscopy and local order parameter behaviour. J Phys-Condens Mat 2:6361–6372

    Article  Google Scholar 

  • Popa K, Bregiroux D, Konings RJM, Gouder T, Popa AF, Geisler T, Raison PE (2007) The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry. J Solid State Chem 180:2346–2355

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (Φ-ρ-Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Raison PE, Jardin R, Bouëxière KRJM, Geisler T, Pavel CC, Rebizant J, Popa K (2008) Structural investigation of the synthetic CaAn(PO4)2 (An = Th and Np) cheralite-like phosphates. Phys Chem Miner 35:603–609

    Article  Google Scholar 

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petr 94:304–316

    Article  Google Scholar 

  • Sahoo S, Dhara S, Sivasubramanian V, Kalavathi S, Arora AK (2009) Phonon confinement and substitutional disorder in Cd1-xZnxS nanocrystals. J Raman Spectrosc 40:1050–1054

    Article  Google Scholar 

  • Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Mineral 84:1107–1116

    Google Scholar 

  • Santos CC, Silva EN, Ayala AP, Guedes I, Pizani PS, Loong C-K, Boatner LA (2007) Raman investigations of rare earth orthovanadates. J Appl Phys 101:053511-1–053511-5

    Article  Google Scholar 

  • Schulz B, Brätz H, Bombach K, Krenn E (2007) In situ Th-Pb dating of monazite by 266 nm laser ablation and ICP-MS with a single collector, and its control by EMP analysis. Z Geol Wissenschaft 6:377–392

    Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:240–253

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Deutsch A, Schärer U (2004) Microstructure of 24–1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits. Geochim Cosmochim Ac 68:2517–2527

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Ingrin R (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. Eur J Mineral 19:7–14

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Silva EN, Ayala AP, Guedes I, Paschoal CWA, Moreira RL, Loong C-K, Boatner LA (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. Opt Mater 29:224–230

    Article  Google Scholar 

  • Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering. Phys Rev B 64:245407

    Article  Google Scholar 

  • Terra O, Clavier N, Dacheux N, Podor R (2003) Preparation and characterization of lanthanum-gadolinium monazites as ceramics for radioactive waste storage. New J Chem 27:957–967

    Article  Google Scholar 

  • Többens DM, Kahlenberg V (2011) Improved DFT calculation of Raman spectra of silicates. Vib Spectrosc 56:265–272

    Article  Google Scholar 

  • Trocellier P (2000) Immobilization of radionuclides in single-phase crystalline waste forms: a review on their intrinsic properties and long term behaviour. Ann Chim-Sci Mat 25:321–337

    Article  Google Scholar 

  • Váczi T, Nasdala L, Wirth R, Mehofer M, Libowitzky E, Häger T (2009) On the breakdown of zircon upon “dry” thermal annealing. Miner Petrol 97:129–138

    Article  Google Scholar 

  • Van Emden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104

    Google Scholar 

  • Watt GR (1995) High-thorium monazite– (Ce) formed during disequilibrium melting of metapelites under granulite-facies conditions. Mineral Mag 59:735–743

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Article  Google Scholar 

  • Weise C, van den Boogaart KG, Jonckheere R, Ratschbacher L (2009) Annealing kinetics of Kr-tracks in monazite: implications for fission-track modelling. Chem Geol 260:129–137

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Pl Sc 35:137–175

    Article  Google Scholar 

Download references

Acknowledgements

The natural monazite–(Ce) samples used in this study were kindly made available by A. Ertl, M. J. Jercinovic, A. K. Kennedy, B. Schulz, and A.-M. Seydoux-Guillaume. Thanks are due to A. Wagner for sample preparation, and C. Fisher, E. Libowitzky and D. Talla for experimental assistance. Helpful comments by two anonymous reviewers and associate editor A. Beran are gratefully acknowledged. Partial funding for this research was provided by the European Commission through contract no. MEXC–CT–2005–024878 and the Austrian Science Fund (FWF) grant P20028–N10 to LN. DMT acknowledges the support by the Austrian Ministry of Science (BMWF) as part of the UniInfrastrukturprogramm of the Forschungsplattform Scientific Computing at LFU Innsbruck. JMH thanks the Canadian Natural Sciences and Research Council (NSERC) for partial support for this research in the form of a Discovery Grant, and Memorial University of Newfoundland, for additional financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Ruschel.

Additional information

Editorial handling: A. Beran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 182 kb)

Table S2

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruschel, K., Nasdala, L., Kronz, A. et al. A Raman spectroscopic study on the structural disorder of monazite–(Ce). Miner Petrol 105, 41–55 (2012). https://doi.org/10.1007/s00710-012-0197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0197-7

Keywords

Navigation