Skip to main content
Log in

Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10−3 M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca2+ chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

AVG:

Aminoethoxyvinyl glycine

CAT:

Catalase

cPTIO:

Carboxyphenyl-tetramethylimidazoline-oxide

DAF-2 DA:

4,5 Diaminofluorescein-diacetate

DPI:

Diphenyleneiodonium chloride

E-64:

N-(trans-epoxysuccinyl)-l-leucine 4-guanidinobutylamide

EGTA:

Ethylene glycol tetraacetic acid

EL:

Relative electrolyte leakage

ET:

Ethylene

FDA:

Fluorescein diacetate

H2DCFDA:

2′,7′-Dichlorofluorescein diacetate

HR:

Hypersensitive response

KOR:

Depolarization-active outward-rectifying K+ channels

MAPK:

Mitogen-activated protein kinase

NO:

Nitric oxide

Nr :

Never ripe tomato (ethylene receptor) mutant

NSCC:

Non-selective cation channels

PBS:

Phosphate-buffered saline

PCD:

Programmed cell death

PD98059:

Amino-methoxyphenyl-benzopyran

PM:

Plasma membrane

ROS:

Reactive oxygen species

SA:

Salicylic acid

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

STS:

Silver thiosulphate

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling

W-7:

N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride

References

  • Affenzeller MJ, Dareshouri A, Andosch A, Lutz C, Lutz-Meindl U (2009) Salt stress induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954

    Article  PubMed  CAS  Google Scholar 

  • Ahlfors R, Brosché M, Kangasjärvi J (2009) Ozone and nitric oxide interaction in Arabidopsis thaliana. Plant Signal Behav 4:878–879

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442

    Article  PubMed  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  PubMed  CAS  Google Scholar 

  • Bastianelli F, Costa A, Vescovi M, D’Apuzzo E, Zottini M, Chiurazzi M, Schiavo FL (2010) Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants. Plant Mol Biol 72:469–483

    Article  PubMed  CAS  Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Byczkowska A, Kunikowska A, Kaźmierczak A (2012) Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma. doi:10.1007/s00709-0120383-9

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neil SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Thomas H (2000) Senescence and programmed cell death. Biochem Mol Biol Plants 2000:1044–1100

    Google Scholar 

  • Danon A, Delorme V, Mailhac N, Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiol Biochem 38:647–655

    Article  CAS  Google Scholar 

  • De Jong A, Hoeberichts FA, Yakimova ET, Maximova E, Woltering EJ (2000) Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta 211:656–662

    Article  PubMed  Google Scholar 

  • De Jong A, Yakimova ET, Kapchina VM, Woltering EJ (2002) A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 21:537–545

    Article  Google Scholar 

  • del Pozo O, Pedley KF, Martin GB (2004) MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    Article  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Zhang W, Li B, Wang Y, Li K, Sodmergen HC, Zhang Y, Li X (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

    Article  PubMed  CAS  Google Scholar 

  • Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608

    Article  PubMed  CAS  Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirement suspensions cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • García-Heredia JM, Hervás M, De la Rosa MA, Navarro JA (2008) Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. Planta 228:89–97

    Article  PubMed  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  PubMed  CAS  Google Scholar 

  • Gémes K (2011) Improving salt stress acclimation of tomato by salicylic acid: the role of reactive oxygen species and nitric oxide. PhD Thesis, (in Hungarian) pp. 63–66

  • Gémes K, Poór P, Horváth E, Zs K, Szopkó D, Szepesi Á, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    Article  PubMed  Google Scholar 

  • Gunawardena A, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    Article  PubMed  CAS  Google Scholar 

  • Hoeberichts FA, ten Have A, Woltering EJ (2003) A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517–522

    Article  PubMed  CAS  Google Scholar 

  • Huh GH, Damaz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. J Exp Bot 56:2733–2744

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390

    Article  CAS  Google Scholar 

  • Kubis SE, Castilho AMMF, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3—a potential regulator of ethylene activity and plant growth modulator. Electric J Biotechnol 12:1–15

    Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Leslie CA, Romani RJ (1986) Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep 5:144–146

    Article  CAS  Google Scholar 

  • Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13:589–595

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Poór P, Tari I (2011) Ethylene-regulated reactive oxygen species and nitric oxide under salt stress in tomato cell suspension culture. Acta Biol Szeged 55:143–146

    Google Scholar 

  • Poór P, Gémes K, Horváth F, Szepesi Á, Simon ML, Tari I (2011a) Salicylic acid treatment via the rooting medium interferes with the stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato and decreases the harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  PubMed  Google Scholar 

  • Poór P, Szopkó D, Tari I (2011b) Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-011-9419-7, #IVPL-D-10-00389R2

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32:447–456

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ (2005) Cell death and organ development in plants. Curr Top Dev Biol 71:225–261

    Article  PubMed  CAS  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–712

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Li L, Liu M, Wang M, Ding M, Deng S, Lu C, Zhou X, Shen X, Zheng X, Chen S (2010) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult 103:205–215

    Article  CAS  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  PubMed  CAS  Google Scholar 

  • Tari I, Csiszár J, Gémes K, Szepesi Á (2006) Modulation of Cu2+ accumulation by (aminoethoxyvinyl)glycine and methylglyoxal bis(guanylhydrazone), the inhibitors of stress ethylene and polyamine synthesis in wheat genotypes. Cereal Res Commun 34:989–996

    Article  CAS  Google Scholar 

  • Tari I, Poór P, Gémes K (2011) Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive Never ripe tomato mutants. Plant Signal Behav 6:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Trobacher CP, Senatore A, Greenwood JS (2006) Masterminds or minions? Cysteine proteinases in plant programmed cell death. Can J Bot-Rev 84:651–667

    Article  CAS  Google Scholar 

  • van Doorn (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  Google Scholar 

  • Vartapetian AB, Tuzhikov AL, Chichkova NV, Taliansky M, Wolpert TJ (2011) A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Diff 18:1289–1297

    Article  CAS  Google Scholar 

  • Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintain ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liang X, Huang J, Zhang D, Lu H, Liu Z, Bi Y (2010a) Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses. Plant Cell Physiol 51:1754–1765

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li X, Liu Y, Zhao X (2010b) Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol 167:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Wi SJ, Jang SJ, Park KY (2010) Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol Cells 30:37–49

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ (2004) Death proteases come alive. Trends Plant Sci 9:469–472

    Article  PubMed  CAS  Google Scholar 

  • Yakimova ET, Kapchina-Toteva VM, Laarhoven LJ, Harren FM, Woltering EJ (2006) Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol Biochem 44:581–589

    Article  PubMed  CAS  Google Scholar 

  • Yakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJM, Cristescu SM (2008) Cadmium toxicity in cultured tomato cells-role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 32:1521–1529

    Article  Google Scholar 

  • Zhang S, Klessing DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Costa A, Michele RD, Ruzzene M, Carimi F, Schiavo FL (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kispálné Szabó Ibolya for her excellent technical assistance. This work was supported by grants from the Hungarian National Scientific Research Foundation (OTKA K76854 and OTKA K 101243).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Tari.

Additional information

Handling Editor: Heiti Paves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poór, P., Kovács, J., Szopkó, D. et al. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250, 273–284 (2013). https://doi.org/10.1007/s00709-012-0408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0408-4

Keywords

Navigation