Skip to main content
Log in

Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent + incandescent light (100 μmol photons m−2 s−1). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdelkader AF, Aronsson H, Solymosi K, Böddi B, Sundqvist C (2007a) High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. J Exp Bot 58:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Abdelkader AF, Aronsson H, Sundqvist C (2007b) High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiol Plant 130:157–166

    Article  CAS  Google Scholar 

  • Abogadallah GM (2010) Antioxidative defence under salt stress. Plant Signal Behav 5:369–374

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  PubMed  CAS  Google Scholar 

  • Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohashi N (ed) The lutein—prevention and treatment for diseases. Transworld Research Network, Trivandrum, pp 187–256

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Biol 53:1331–1341

    CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol PlantMol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Asencio C, Rodriguez-Aguilera JC, Ruiz-Ferrer M, Vela J, Navas P (2003) Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. Fed Am Soc Exp Biol J 17:1135–1137

    CAS  Google Scholar 

  • Azevedo-Neto AD, Prisco JT, Eneas-Filho J, de Abreu CEB, Gomes-Filho E (2005) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt tolerant and salt sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Barba-Espín G, Clemente-Moreno MJ, Alvarez S, García-Legaz MF, Hernández JA, Díaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol (Stuttg) 13:909–917

    Article  CAS  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792

    Article  PubMed  CAS  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bernstein N, Shoresh M, Xu Y, Huang B (2010) Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radic Biol Med 49:1161–1171

    Article  PubMed  CAS  Google Scholar 

  • Bor M, Ozdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  PubMed  CAS  Google Scholar 

  • Chrost B, Falk J, Kemebeck B, Molleken H, Krupinska K (1999) Tocopherols biosynthesis in senescing chloroplasts—a mechanism to protect envelope membranes against oxidative stress and a prerequisitie for lipid remobilization? In: Argyroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology. Kluwer Academic, Dordrecht, pp 171–176

    Chapter  Google Scholar 

  • Colombo ML (2010) An update on vitamin E, tocopherol and tocotrienol—perspectives. Molecules 15:2103–2113

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • De Gara L, Paciolla C, De Tullio MC, Matto M, Arrigoni O (2000) Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol Plant 109:7–13

    Article  Google Scholar 

  • de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  CAS  Google Scholar 

  • De Tullio MC, Arrigoni O (2004) Hopes, disillusions and more hopes from vitamin C. Cell Mol Life Sci 61:209–219

    Article  PubMed  CAS  Google Scholar 

  • Demiral T, Turkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant response of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Eenennaam AL, Lincholn K, Durrett TP, Valentin HE, Shewmaker CK et al (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Article  PubMed  CAS  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  PubMed  CAS  Google Scholar 

  • Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna uniguiculata. Physiol Plant 117:237–244

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Lelandais MA (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaves mesophyll cells. J Plant Physiol 148:391–398

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione poll and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protoc 2:871–874

    Article  PubMed  CAS  Google Scholar 

  • Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J lipid res 39:1529–1542

    PubMed  CAS  Google Scholar 

  • Gomez JM, Jimenez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130

    Article  PubMed  CAS  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclimation. Ann Rev Plant Physiol 33:347–372

    Article  CAS  Google Scholar 

  • Gregenheimer P (1990) Preparation of extracts from plants. Meth Enzymol 182:174–193

    Article  Google Scholar 

  • Grusak MA (1999) Genomics-assisted plant improvement to benefit human nutrition and health. Trends Plant Sci 4:164–166

    Article  PubMed  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Eymery F, PorWrova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    Article  PubMed  CAS  Google Scholar 

  • Hemavathi UCP, Young KE et al (2009) Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

    Article  CAS  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  PubMed  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with the induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Hernández M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521–535

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM (2011) Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicol Environ Saf 74:2050–2056

    Article  PubMed  CAS  Google Scholar 

  • Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and to cotrienol biosynthesis. Lipids 42:97–108

    Article  PubMed  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865–876

    Article  PubMed  CAS  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent centre: implication for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Kiddle G, Pastori GM, Bernard S, Pignocchi C, Antoniw J, Verrier PJ et al (2003) Effects of leaf ascorbate content on defence and photosynthesis gene expression in Arabidopsis thaliana. Antioxid Redox Sign 5:3–32

    Article  CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38:218–224

    Article  PubMed  CAS  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Bol 48:251–275

    Article  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248:817–828

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Kim SK, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). Mol Cells 24:301–306

    PubMed  CAS  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435

    Article  PubMed  CAS  Google Scholar 

  • Maricle BR (2010) Changes in chlorophyll content and antioxidant capacity during dark to light transitions in etiolated seedlings: comparisons of species and units of enzyme activity. Trans Kans Acad Sci 113:177–190

    Article  Google Scholar 

  • Mateo A, Mühlenbock P, Rustérucci C, Chi-Chen Chang C, Miszalski Z, Karpinska B et al (2004) Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  PubMed  CAS  Google Scholar 

  • Mène-Saffrané L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301–309

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mishra B, Singh RK, Bhattacharya RK (1992) CSR10, a newly released dwarf rice for salt affected soils. Int Rice Res Notes 17:19

    Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2011) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma. doi:10.1007/s00709-011-0365-3

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals Bot 99:1161–1173

    Article  CAS  Google Scholar 

  • Müller-Moulé P, Talila Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S (2007) Alpha-tocopherol: a multifaceted molecule in plants. Vitam Horm 76:375–392

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanivic S, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Phil Trans R Soc Lond B 355:1465–1475

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defence system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerant markers. J Plant Physiol 166:1764–1774

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defence potential to NaCl in a mangrove, Bruguiera paviflora: different changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Patterson BD, Pyane LN, Chen Y, Grahum D (1984) An inhibitor of catalase induced by cold chilling-sensitive plant. Plant Physiol 76:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  PubMed  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase–ascorbate–glutathione pathway by metabolic modeling: computer analysis as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed  CAS  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  PubMed  CAS  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160:415–423

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic Indica rice cultivar to high salinity with non-aromatic Indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  PubMed  CAS  Google Scholar 

  • Sahi C, Agarwal M, Reddy MK, Sopory SK, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theor Appl Genet 106:620–628

    PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Sekmen AH, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Takemura T, Hanagata N, Dubinsky Z, Karube I (2002) Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees-Struct Funct 16:94–99

    Article  CAS  Google Scholar 

  • Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol Biochem 48:772–777

    Article  PubMed  CAS  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347

    Article  PubMed  CAS  Google Scholar 

  • Triantaphylidés C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Breusegem FV, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Pattanayak GK (2010) Singlet oxygen-induced oxidative stress in plants. In: Rebeiz CA et al (eds) The chloroplast: basics and applications. Springer, Dordrecht, pp 397–412

    Chapter  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307

    Article  PubMed  CAS  Google Scholar 

  • Velikova M, Bankova V, Marcucci MC, Tsvetkova I, Kujumgiev A (2000) Chemical composition and biological activity of propolis from Brazilian meliponinae. Z Naturforsch C 55:785–789

    PubMed  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677

    Article  CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  PubMed  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  PubMed  CAS  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of the whole-plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee SNB (2010) Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  PubMed  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res Int 19:8–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work was supported by a grant from the Department of Science and Technology and capacity buildup funds and a purse grant from Jawaharlal Nehru University, New Delhi to BC Tripathy. Satpal Turan is thankful to Prof. Anil Grover for providing the lab facility while preparing the manuscript and the University Grants Commission for providing financial assistantship in the form of Dr. D.S. Kothari Post-doctoral fellowship.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baishnab C. Tripathy.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turan, S., Tripathy, B.C. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250, 209–222 (2013). https://doi.org/10.1007/s00709-012-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0395-5

Keywords

Navigation