Skip to main content
Log in

Enhancing Vitamin E in Oilseeds: Unraveling Tocopherol and Tocotrienol Biosynthesis

  • Invited Thematic Review
  • Published:
Lipids

Abstract

Naturally occurring vitamin E, comprised of four forms each of tocopherols and tocotrienols, are synthesized solely by photosynthetic organisms and function primarily as antioxidants. These different forms vary in their biological availability and in their physiological and chemical activities. Tocopherols and tocotrienols play important roles in the oxidative stability of vegetable oils and in the nutritional quality of crop plants for human and livestock diets. The isolation of genes for nearly all the steps in tocopherol and tocotrienol biosynthesis has facilitated efforts to alter metabolic flux through these pathways in plant cells. Herein we review the recent work done in the field, focusing on branch points and metabolic engineering to enhance and alter vitamin E content and composition in oilseed crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DXP:

1-Deoxy-d-xyulose-5-phosphate

GGDP:

Geranylgeranyldiphosphate

GGR:

Geranylgeranyl reductase

HGA:

Homogentisate

HGGT:

Homogentisate geranylgeranyl transferase

HPP:

p-Hydroxyphenylpyruvate

HPPD:

Hydroxyphenylpyruvate dioxygenase

HPT:

Homogentisate phytyltransferase

PDP:

Phytyldiphosphate

PK:

Phytol kinase

PMP:

Phytylmonophosphate

PrBQMT:

2-Methyl-6-prenylbenzoquinol methyltransferase

PrDP:

Prenyldiphosphate

SDP:

Solanesyldiphosphate

TC:

Tocopherol/tocotrienol cyclase

TMT:

Tocopherol/tocotrienol methyltransferase

References

  1. Aizetmüller K (1997) Antioxidative effects of Carum seeds. J Am Oil Chem Soc 74:185

    Google Scholar 

  2. Arango Y, Heise K (1998) Short communication. Localization of α-tocopherol synthesis in chromoplast envelope membranes of Capsicum annuum L. Fruits J Exp Bot 49:1259–1262

    CAS  Google Scholar 

  3. Austin JR II, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  PubMed  CAS  Google Scholar 

  4. Bergmüller E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190

    Article  PubMed  Google Scholar 

  5. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  PubMed  CAS  Google Scholar 

  6. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356

    Article  PubMed  CAS  Google Scholar 

  7. Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    Article  PubMed  CAS  Google Scholar 

  8. Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol. 131:632–642

    Article  PubMed  CAS  Google Scholar 

  9. Coruzzi G, Last RL (2000) Amino acids (Chapter 8). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 358–410

    Google Scholar 

  10. d’Harlingue A, Camara B (1985) Plastid enzymes of terpenoid biosynthesis. Purification and characterization of γ-tocopherol methyltransferase from Capsicum chromoplasts. J Biol Chem 260:15200–15203

    PubMed  CAS  Google Scholar 

  11. Domergue F, Abbadi A, Heinz E (2005) Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci 10:112–116

    PubMed  CAS  Google Scholar 

  12. Erhan SZ, Asadauskas S (2000) Lubricant basestocks from vegetable oils. Ind Crops Prod 11:277–282

    Article  CAS  Google Scholar 

  13. Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    Article  PubMed  Google Scholar 

  14. Falk J, Andersen G, Kernebeck B, Krupinska K (2003) Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett 540:35–40

    Article  PubMed  CAS  Google Scholar 

  15. Falk J, Krahnstöver A, van der Kooij TA, Schlensog M, Krupinska K (2004) Tocopherol and tocotrienol accumulation during development of caryopses from barley (Hordeum vulgare L.) Phytochemistry 65:2977–2985

    Article  PubMed  CAS  Google Scholar 

  16. Falk J, Brosch M, Schäfer A, Braun S, Krupinska K (2005) Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase. J Plant Physiol 162:738–742

    Article  PubMed  CAS  Google Scholar 

  17. Garcia I, Rodgers M, Pepin R, Hsieh TF, Matringe M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119:1507–1516

    Article  PubMed  CAS  Google Scholar 

  18. Hass CG, Tang S, Leonard S, Traber MG, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in Sunflower. Theor Appl Genet 113:767–782

    Article  PubMed  CAS  Google Scholar 

  19. Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    Article  PubMed  CAS  Google Scholar 

  20. Herbers K (2003) Vitamin production in transgenic plants. J Plant Physiol 160:821–829

    Article  PubMed  CAS  Google Scholar 

  21. Hofius D, Hajirezaei MR, Geiger M, Tschiersch H, Melzer M, Sonnewald U (2004) RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol 135:1256–1268

    Article  PubMed  CAS  Google Scholar 

  22. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  23. Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477

    Article  PubMed  CAS  Google Scholar 

  24. Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  25. Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed  CAS  Google Scholar 

  26. Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400

    Article  PubMed  CAS  Google Scholar 

  27. Keller Y, Bouvier F, d’Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis. Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251:413–417

    Article  PubMed  CAS  Google Scholar 

  28. Kumar R, Raclaru M, Schüßeler T, Gruber J, Sadre R, Lühs W, Zarhloul KM, Friedt W, Enders D, Frentzen M, Weier D (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579:1357–1364

    Article  PubMed  CAS  Google Scholar 

  29. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  30. Liu Q, Lanari MC, Schaefer DM (1995) A review of dietary vitamin E supplementation for improvement of beef quality. J Anim Sci 73:3131–3140

    PubMed  CAS  Google Scholar 

  31. Maeda H, Song W, Sage TL, DellaPenna D (2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell 18:2710–2732

    Article  PubMed  CAS  Google Scholar 

  32. Matthaus B, Vosmann K, Pham LQ, Aizetmüller K (2003) FA and tocopherol composition of Vietnamese oilseeds. J Am Oil Chem Soc 80:1013–1020

    Article  CAS  Google Scholar 

  33. Nesaretnam K, Stephen R, Dils R, Darbre P (1998) Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33:461–469

    Article  PubMed  CAS  Google Scholar 

  34. Öhrvall M, Sundlöf G, Vessby B (1996) Gamma, but not alpha, tocopherol levels in serum are reduced in coronary heart disease patients. J Intern Med 239:111–117

    Article  PubMed  Google Scholar 

  35. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2004) α-Tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 47:904–915

    Article  PubMed  CAS  Google Scholar 

  36. Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJ (1992) Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem 35:3595–3606

    Article  PubMed  CAS  Google Scholar 

  37. Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  PubMed  CAS  Google Scholar 

  38. Provencher LM, Miao L, Sinha N, Lucas WJ (2001) Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13:1127–1141

    Article  PubMed  CAS  Google Scholar 

  39. Qureshi AA, Burger WC, Peterson DM, Elson CE (1986) The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J Biol Chem 261:10544–10550

    PubMed  CAS  Google Scholar 

  40. Raclaru M, Gruber J, Kumar R, Sadre R, Lühs W, Zarhloul MK, Friedt W, Frentzen M, Weier D (2006) Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breed 18:93–107

    Article  CAS  Google Scholar 

  41. Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100

    Article  PubMed  CAS  Google Scholar 

  42. Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE (1989) Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol 89:1028–1030

    Article  PubMed  CAS  Google Scholar 

  43. Sadre R, Gruber J, Frentzen M (2006) Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett 580:5357–5362

    Article  PubMed  CAS  Google Scholar 

  44. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195

    Article  PubMed  CAS  Google Scholar 

  45. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  PubMed  CAS  Google Scholar 

  46. Savidge B, Weiss JD, Wong YH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  PubMed  CAS  Google Scholar 

  47. Schledz M, Seidler A, Beyer P, Neuhaus G (2001) A novel phytyltransferase from Synechocystis Sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499:15–20

    Article  PubMed  CAS  Google Scholar 

  48. Serbinova EA, Packer L (1994) Antioxidant properties of α-tocopherol and α-tocotrienol. Meth Enzymol 234:354–366

    Article  PubMed  CAS  Google Scholar 

  49. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  PubMed  CAS  Google Scholar 

  50. Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  PubMed  CAS  Google Scholar 

  51. Shintani DK, Cheng Z, DellaPenna D (2002) The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett 511:1–5

    Article  PubMed  CAS  Google Scholar 

  52. Soll J (1987) α-Tocopherol and plastoquinone synthesis in chloroplast membranes. Meth Enzymol 148:383–392

    CAS  Google Scholar 

  53. Soll J, Schultz G (1980) 2-Methyl-6-phytylquinol and 2,3-dimethyl-5-phytylquinol as precursors of tocopherol synthesis in spinach chloroplasts. Phytochemistry 19:215–218

    Article  CAS  Google Scholar 

  54. Soll J, Schultz G (1981) Phytol synthesis from geranylgeraniol in spinach chloroplasts. Biochem Biophys Res Commun 99:907–912

    Article  PubMed  CAS  Google Scholar 

  55. Soll J, Kemmerling M, Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys 204:544–550

    Article  PubMed  CAS  Google Scholar 

  56. Stocker A, Fretz H, Frick H, Rüttimann A, Woggon WD (1996) The substrate specificity of tocopherol cyclase. Bioorg Med Chem 4:1129–1134

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE, Packer L (1993) Structural and dynamic membrane properties of α-tocopherol and α-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry 32:10692–10699

    Article  PubMed  CAS  Google Scholar 

  58. Tang S, Hass CG, Knapp SJ (2006) Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:783–799

    Article  PubMed  CAS  Google Scholar 

  59. Tavva VS, Kim YH, Kagan IA, Dinkins RD, Kim KH, Collins GB (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26:61–70

    Article  PubMed  CAS  Google Scholar 

  60. Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920

    Article  CAS  Google Scholar 

  61. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene5–1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  PubMed  CAS  Google Scholar 

  62. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Article  PubMed  CAS  Google Scholar 

  63. Venkatesh TV, Karunanandaa B, Free DL, Rottnek JM, Baszis SR, Valentin HE (2006) Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta 223:1134–1144

    Article  PubMed  CAS  Google Scholar 

  64. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    Article  PubMed  CAS  Google Scholar 

  65. Wagner KH, Elmadfa I (2000) Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. Eur J Lipid Sci Tech 102:624–629

    Article  CAS  Google Scholar 

  66. Wagner KH, Wotruba F, Elmadfa I (2001) Antioxidative potential of tocotrienols and tocopherols in coconut fat at different oxidation temperatures. Eur J Lipid Sci Tech 103:746–751

    Article  CAS  Google Scholar 

  67. Warner K, Neff WE, Eller FJ (2003) Enhancing quality and oxidative stability of aged fried food with γ-tocopherol. J Agric Food Chem 51:623–627

    Article  PubMed  CAS  Google Scholar 

  68. Waylan AT, O’Quinn PR, Unruh JA, Nelssen JL, Goodband RD, Woodworth JC, Tokach MD, Koo SI (2002) Effects of modified tall oil and vitamin E on growth performance, carcass characteristics, and meat quality of growing-finishing pigs. J Anim Sci 80:1575–1585

    PubMed  CAS  Google Scholar 

  69. Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 16:109–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by the National Research Initiative of the USDA Co-operative State Research, Education and Extension Service, grant number 2004-35318-14887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar B. Cahoon.

About this article

Cite this article

Hunter, S.C., Cahoon, E.B. Enhancing Vitamin E in Oilseeds: Unraveling Tocopherol and Tocotrienol Biosynthesis. Lipids 42, 97–108 (2007). https://doi.org/10.1007/s11745-007-3028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3028-6

Keywords

Navigation