Skip to main content

Advertisement

Log in

Energy flow and performance of a nonlinear vibration isolator exploiting geometric nonlinearity by embedding springs in linkages

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study presents nonlinear vibration isolators with nonlinear elements created by the geometric nonlinearity of a linkage mechanism with embedded linear springs and investigates their dynamic behaviour and performance. Applications of the proposed isolator to single degree-of-freedom (DOF) systems subjected to force and base-motion excitations and to a two-DOF system with a flexible foundation are considered. The steady-state responses of systems with such isolators are obtained using the harmonic balance (HB) method and a numerical time-marching method. Force and displacement transmissibilities as well as time-averaged energy flow of the nonlinear isolator are employed as indices for performance evaluations. It is shown that the use of the proposed nonlinear element can enlarge the frequency range of effective isolation. Substantial reductions can be found in the peak values of frequency response, displacement transmissibility and kinetic energy of the SDOF nonlinear isolation systems. The peaks in the curves of energy transmission and force transmission are shifted to low frequencies with reduced peak values, beneficial to the suppression of vibration transmission to the flexible base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lee, C.M., Goverdovskiy, V.N., Temnikov, A.I.: Design of springs with “negative” stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302, 865–874 (2007)

    Article  Google Scholar 

  2. Pishvaye Naeeni, I., Ghayour, M., Keshavarzi, A., Moslemi, A.: Theoretical analysis of vibration pickups with quasi-zero-stiffness characteristic. Acta Mech. 230, 3205–3220 (2019)

    Article  Google Scholar 

  3. Yan, B., Wang, Z.H., Ma, H.Y., Bao, H.H., Wang, K., Wu, C.Y.: A novel lever-type vibration isolator with eddy current damping. J. Sound Vib. 494, 115862 (2021)

    Article  Google Scholar 

  4. Tehrani, G.G., Dardel, M., Pashaei, M.H.: Passive vibration absorbers for vibration reduction in the multi-bladed rotor with rotor and stator contact. Acta Mech. 231, 597–623 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, Y.P., Zhou, J.X., Wang, K., Xu, D.L.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 494, 115859 (2021)

    Article  Google Scholar 

  6. Gatti, G.: Optimizing elastic potential energy via geometric nonlinear stiffness. Commun. Nonlinear Sci. 103, 106035 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, Y.Y., Han, Y.W., Zhang, Z.J.: On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping. Acta Mech. 230, 2563–2579 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, Y., Zhou, J., Thompson, D., Yuan, T., Gong, D., You, T.: Design, analysis and experimental validation of high static and low dynamic stiffness mounts based on target force curves. Int. J. Nonlin. Mech. 126, 103559 (2020)

    Article  Google Scholar 

  9. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)

    Article  Google Scholar 

  10. Yan, B., Yu, N., Ma, H.Y., Wu, C.Y.: A theory for bistable vibration isolators. Mech. Syst. Signal Process. 167, 108507 (2022)

    Article  Google Scholar 

  11. Wu, Q., Huang, G., Liu, C., Xie, S., Xu, M.: Low-frequency multi-mode vibration suppression of a metastructure beam with two-stage high-static-low-dynamic stiffness oscillators. Acta Mech. 230, 4341–4356 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Article  Google Scholar 

  13. Zhao, F., Ji, J.C., Ye, K., Luo, Q.T.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Process 144, 106975 (2020)

    Article  Google Scholar 

  14. Huang, X.C., Chen, Y., Hua, H.X., Liu, X.T., Zhang, Z.Y.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015)

    Article  Google Scholar 

  15. Palomares, E., Nieto, A.J., Morales, A.L., Chicharro, J.M., Pintado, P.: Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system. J. Sound Vib. 414, 31–42 (2018)

    Article  Google Scholar 

  16. Sun, X.T., Wang, F., Xu, J.: Analysis, design and experiment of continuous isolation structure with local quasi-zero-stiffness property by magnetic interaction. Int. J. Nonlinear Mech. 116, 289–301 (2019)

    Article  Google Scholar 

  17. Zhou, J.X., Wang, X.L., Xu, D.L., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  18. Zhou, J.X., Xiao, Q.Y., Xu, D.L., Ouyang, H.J., Li, Y.L.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)

    Article  Google Scholar 

  19. Virgin, L.N., Santillan, S.T., Plaut, R.H.: Vibration isolation using extreme geometric nonlinearity. J. Sound Vib. 315, 721–731 (2008)

    Article  Google Scholar 

  20. Hu, Z., Zheng, G.T.: A combined dynamic analysis method for geometrically nonlinear vibration isolators with elastic rings. Mech. Syst. Signal Process. 76–77, 634–648 (2016)

    Article  Google Scholar 

  21. Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F., Hua, H.X.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74, 1103–1112 (2013)

    Article  Google Scholar 

  22. Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332, 510–520 (2013)

    Article  Google Scholar 

  23. Yan, L.X., Xuan, S.H., Gong, X.L.: Shock isolation performance of a geometric anti-spring isolator. J. Sound Vib. 413, 120–143 (2018)

    Article  Google Scholar 

  24. Gatti, G., Mundo, D.: Optimal synthesis of six-bar cammed-linkages for exact rigid-body guidance. Mech. Mach. Theory 42, 1069–1081 (2007)

    Article  MATH  Google Scholar 

  25. Jia, G., Li, B., Huang, H., Zhang, D.: Type synthesis of metamorphic mechanisms with scissor-like linkage based on different kinds of connecting pairs. Mech. Mach. Theory 151, 103848 (2020)

    Article  Google Scholar 

  26. Shaw, A.D., Gatti, G., Gonçalves, P.J.P., Tang, B., Brennan, M.J.: Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal Process. 152, 107354 (2021)

    Article  Google Scholar 

  27. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

  28. Bosetti, P., Biral, F., Bortoluzzi, D.: Design, manufacturing, and performance verification of a Roberts linkage for inertial isolation. Precis. Eng. 38, 138–147 (2014)

    Article  Google Scholar 

  29. Gatti, G., Shaw, A.D., Gonçalves, P.J.P., Brennan, M.J.: On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper. Mech. Syst. Signal Process. 164, 108258 (2022)

    Article  Google Scholar 

  30. Sun, X.T., Jing, X.J.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016)

    Article  Google Scholar 

  31. Jing, X.J., Zhang, L.L., Jiang, G.Q., Feng, X., Guo, Y.Q., Xu, Z.D.: Critical factors in designing a class of X-shaped structures for vibration isolation. Eng. Struct. 199, 109659 (2019)

    Article  Google Scholar 

  32. Bian, J., Jing, X.J.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101, 2195–2222 (2020)

    Article  Google Scholar 

  33. Wang, Y., Jing, X.J., Dai, H.H., Li, F.M.: Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system. Int. J. Mech. Sci. 152, 167–184 (2019)

    Article  Google Scholar 

  34. Hu, F.Z., Jing, X.J.: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dyn. 91, 157–185 (2018)

    Article  Google Scholar 

  35. Jing, X.J., Zhang, L.L., Feng, X., Sun, B., Li, Q.K.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019)

    Article  Google Scholar 

  36. Dai, H.H., Jing, X.J., Wang, Y., Yue, X.K., Yuan, J.P.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Process. 105, 214–240 (2018)

    Article  Google Scholar 

  37. Goyder, H.G.D., White, R.G.: Vibrational power flow from machines into built-up structures, part II: Wave propagation and power flow in beam-stiffened plates. J. Sound Vib. 68, 77–96 (1980)

    Article  MATH  Google Scholar 

  38. Xing, J.T., Price, W.G.: A power–flow analysis based on continuum dynamics. Proc. R. Soc. A 455, 401–436 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiong, Y.P., Xing, J.T., Price, W.G.: A general linear mathematical model of power flow analysis and control for integrated structure–control systems. J. Sound Vib. 267, 301–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dai, W., Yang, J., Shi, B.Y.: Vibration transmission and power flow in impact oscillators with linear and nonlinear constraints. Int. J. Mech. Sci. 168, 105234 (2020)

    Article  Google Scholar 

  41. Dai, W., Yang, J.: Vibration transmission and energy flow of impact oscillators with nonlinear motion constraints created by diamond-shaped linkage mechanism. Int. J. Mech. Sci. 194, 106212 (2021)

    Article  Google Scholar 

  42. Dai, W., Yang, J., Wiercigroch, M.: Vibration energy flow transmission in systems with Coulomb friction. Int. J. Mech. Sci. 214, 106932 (2022)

    Article  Google Scholar 

  43. Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)

    Article  Google Scholar 

  44. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99, 1823–1839 (2019)

    Article  Google Scholar 

  45. Yang, K., Harne, R.L., Wang, K.W., Huang, H.: Investigation of a bistable dual-stage vibration isolator under harmonic excitation. Smart Mater. Struct. 23, 045033 (2014)

    Article  Google Scholar 

  46. Sciulli, D., Inman, D.J.: Isolation design for a flexible system. J. Sound Vib. 216, 251–267 (1998)

    Article  Google Scholar 

  47. Xiong, Y.P., Xing, J.T., Price, W.G.: Interactive power flow characteristics of an integrated equipment-nonlinear isolator-travelling flexible ship excited by sea waves. J. Sound Vib. 287, 245–276 (2005)

    Article  Google Scholar 

  48. Sun, M.N., Song, G.Q., Li, Y.M., Huang, Z.L.: Effect of negative stiffness mechanism in a vibration isolator with asymmetric and high-static-low-dynamic stiffness. Mech. Syst. Signal Process. 124, 388–407 (2019)

    Article  Google Scholar 

  49. Shaw, A.D., Neild, S.A., Friswell, M.I.: Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. J. Sound Vib. 339, 84–98 (2015)

    Article  Google Scholar 

  50. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)

    Article  Google Scholar 

  51. Alberdi-Muniain, A., Gil-Negrete, N., Kari, L.: Direct energy flow measurement in magneto-sensitive vibration isolator systems. J. Sound Vib. 331, 1994–2006 (2012)

    Article  Google Scholar 

  52. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)

    Article  Google Scholar 

  53. Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Gao, Q.H., Tan, T., Zhang, W.M.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 115344 (2020)

    Article  Google Scholar 

  54. Gatti, G.: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Commun. Nonlinear Sci. 83, 105143 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [Grant Numbers 12172185, 51605233 and 51839005] and by the Zhejiang Provincial Natural Science Foundation of China [Grant Number LY22A020006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Li, T. & Yang, J. Energy flow and performance of a nonlinear vibration isolator exploiting geometric nonlinearity by embedding springs in linkages. Acta Mech 233, 1663–1687 (2022). https://doi.org/10.1007/s00707-022-03182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03182-x

Navigation