Skip to main content
Log in

Theoretical analysis of vibration pickups with quasi-zero-stiffness characteristic

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The use of quasi-zero-stiffness isolators in vibration pickups is investigated in this study. For this purpose, a quasi-zero-stiffness mechanism is first investigated to extract optimal values of parameters guaranteeing these conditions. The frequency response of this type of pickups is then obtained and compared with their equivalent linear pickup to investigate the effects of damping and oscillation amplitude measured by the pickup on the pickup performance. To study the phase distortion, the phase difference between the oscillations exerted on the pickup and those measured by the pickup for various excitation frequencies are measured at quasi-zero-stiffness and their equivalent linear pickups. In this way, the effects of the pickup design parameters on the pickup performance are investigated, and the response of this type of pickups to a sum of two harmonic excitations is studied. Finally, the effects of uncertainties such as friction, noise, etc., on experimental results are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62, 149–163 (2015)

    Article  Google Scholar 

  2. Montazeri-Gh, M., Kavianipour, O.: Investigation of the passive electromagnetic damper. Acta Mech. 223(12), 2633–2646 (2012)

    Article  MATH  Google Scholar 

  3. Fattahi, I., Mirdamadi, H.R.: Novel composite finite element model for piezoelectric energy harvesters based on 3D beam kinematics. Compos. Struct. 179, 161–171 (2017)

    Article  Google Scholar 

  4. Casciati, F., Faravelli, L.: Experimental investigation on the aging of the base isolator elastomeric component. Acta Mech. 223(8), 1633–1643 (2012)

    Article  MATH  Google Scholar 

  5. Fattahi, I., Mirdamadi, H.R.: A novel 3D skeletal frame topology for energy harvesting systems. Microelectron. J. 83, 6–17 (2019)

    Article  Google Scholar 

  6. Naeeni, I.P., Keshavarzi, A., Fattahi, I.: Parametric study on the geometric and kinetic aspects of the slider-crank mechanism. Iran. J. Sci. Technol. Trans. Mech. Eng., pp. 1–13 (2018), https://doi.org/10.1007/s40997-018-0214-5

  7. Zhang, J., et al.: An ultra-low frequency parallel connection nonlinear isolator for precision instruments. In: Key Engineering Materials. Trans Tech Publications (2004)

  8. Blair, D.G., et al.: Performance of an ultra low-frequency folded pendulum. Phys. Lett. A 193(3), 223–226 (1994)

    Article  Google Scholar 

  9. Liu, J., Ju, L., Blair, D.G.: Vibration isolation performance of an ultra-low frequency folded pendulum resonator. Phys. Lett. A 228(4–5), 243–249 (1997)

    Article  Google Scholar 

  10. Biglar, M., et al.: Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm. Acta Mech. 226(10), 3451–3462 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giurgiutiu, V., et al.: Predictive modeling of piezoelectric wafer active sensors interaction with high-frequency structural waves and vibration. Acta Mech. 223(8), 1681–1691 (2012)

    Article  MATH  Google Scholar 

  12. Wang, X., Huang, G.: On the dynamic behavior of piezoelectric sensors and actuators embedded in elastic media. Acta Mech. 197(1–2), 1–17 (2008)

    Article  MATH  Google Scholar 

  13. Goyal, D., Pabla, B.: The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch. Comput. Methods Eng. 23(4), 585–594 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Thomson, W.: Theory of Vibration with Applications. CRC Press, Boca Raton (1996)

    Google Scholar 

  15. Rao, S.S., Yap, F.F.: Mechanical Vibrations, vol. 4. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  16. Scheffer, C., Girdhar, P.: Practical Machinery Vibration Analysis and Predictive Maintenance. Elsevier, Amsterdam (2004)

    Google Scholar 

  17. Buzdugan, G., Mihailescu, E., Rades, M.: Vibration Measurement, vol. 8. Springer, Berlin (1986)

    Book  Google Scholar 

  18. Randall, R.B.: Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Wiley, Hoboken (2011)

    Book  Google Scholar 

  19. Hao, Z., Cao, Q.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015)

    Article  Google Scholar 

  20. Lan, C.-C., Yang, S.-A., Wu, Y.-S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333(20), 4843–4858 (2014)

    Article  Google Scholar 

  21. Xu, D., et al.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013)

    Article  Google Scholar 

  22. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Article  Google Scholar 

  23. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)

    Article  Google Scholar 

  24. Carrella, A., et al.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)

    Article  Google Scholar 

  25. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Article  Google Scholar 

  26. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)

    Article  Google Scholar 

  27. Zhou, J., et al.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  28. Hassan, A.: On the local stability analysis of the approximate harmonic balance solutions. Nonlinear Dyn. 10(2), 105–133 (1996)

    Article  MathSciNet  Google Scholar 

  29. Jazar, G.N., et al.: Frequency response and jump avoidance in a nonlinear passive engine mount. J. Vib. Control 12(11), 1205–1237 (2006)

    Article  MATH  Google Scholar 

  30. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Keshavarzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishvaye Naeeni, I., Ghayour, M., Keshavarzi, A. et al. Theoretical analysis of vibration pickups with quasi-zero-stiffness characteristic. Acta Mech 230, 3205–3220 (2019). https://doi.org/10.1007/s00707-019-02465-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02465-0

Navigation