Skip to main content
Log in

Well-posed nonlocal elasticity model for finite domains and its application to the mechanical behavior of nanorods

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Eringen’s nonlocal elasticity theory is one of the most attractive approaches to investigate the intrinsic scale effect of nanoscopic structures. Eringen proposed both integral and differential nonlocal models which are equivalent to each other over unbounded continuous domains. Although the Eringen nonlocal models can be used as very useful tools for modeling the mechanical characteristics of nanoscopic structures, however, several researchers have reported some paradoxical results when they used the nonlocal differential model. In this paper, we develop a well-posed nonlocal differential model for finite domains, and its applicability to predict the static and dynamic behavior of a nanorod is investigated. It is shown that the proposed integral and differential nonlocal models are equivalent to each other over bounded continuous domains, and the corresponding elastic problems are well-posed and consistent. In addition, some paradigmatic static problems are solved the and we show that the paradoxical results disappear by using the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  Google Scholar 

  2. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  Google Scholar 

  3. Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)

    Article  Google Scholar 

  4. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  5. Peddieson, J., Buchanan, G., Mc Nitt, R.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  6. Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  7. Li, C., Yao, L., Chen, W., Li, S.: Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015)

    Article  Google Scholar 

  8. Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  Google Scholar 

  9. Benvenuti, E., Simone, A.: One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech. Res. Commun. 48, 46–51 (2013)

    Article  Google Scholar 

  10. Barretta, R., Marotti de Sciarra, F., Diaco, M.: Small-scale effects in nanorods. Acta Mech. 225, 1945–1953 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A.: Computational Continuum Mechanics of Nanoscopic Structures: Nonlocal Elasticity Approaches. Springer, Berlin (2019)

    Book  Google Scholar 

  12. Eltaher, M.A., Alshorbagy, A.E., Mahmoud, F.F.: Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37, 4787–4797 (2013)

    Article  MathSciNet  Google Scholar 

  13. Tashakorian, M., Ghavanloo, E., Fazelzadeh, S.A., Hodges, D.H.: Nonlocal fully intrinsic equations for free vibration of Euler–Bernoulli beams with constitutive boundary conditions. Acta Mech. 229, 3279–3292 (2018)

    Article  MathSciNet  Google Scholar 

  14. Romano, G., Luciano, R., Barretta, R., Diaco, M.: Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Contin. Mech. Thermodyn. 30, 641–655 (2018)

    Article  MathSciNet  Google Scholar 

  15. Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. B 114, 184–188 (2017)

    Article  Google Scholar 

  16. Fernández-Sáez, J., Zaera, R.: Vibrations of Bernoulli–Euler beams using the two-phase nonlocal elasticity theory. Int. J. Eng. Sci. 119, 232–248 (2017)

    Article  MathSciNet  Google Scholar 

  17. Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wang, Y.B., Zhu, X.W., Dai, H.H.: Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv. 6, 085114 (2016)

    Article  Google Scholar 

  19. Zhu, X., Li, L.: Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int. J. Mech. Sci. 133, 639–650 (2017)

    Article  Google Scholar 

  20. Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  21. Challamel, N., Wang, C.M., Elishakoff, I.: Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis. Eur. J. Mech. A. Solids 44, 125–135 (2014)

    Article  MathSciNet  Google Scholar 

  22. Hache, F., Challamel, N., Elishakoff, I., Wang, C.M.: Comparison of nonlocal continualization schemes for lattice beams and plates. Arch. Appl. Mech. 87, 1105–1138 (2017)

    Article  Google Scholar 

  23. Polizzotto, C., Fuschi, P., Pisano, A.A.: A strain-difference-based nonlocal elasticity model. Int. J. Solids Struct. 41, 2383–2401 (2004)

    Article  Google Scholar 

  24. Fuschi, P., Pisano, A.A., Polizzotto, C.: Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int. J. Mech. Sci. 151, 661–671 (2019)

    Article  Google Scholar 

  25. Barretta, R., Fazelzadeh, S.A., Feo, L., Ghavanloo, E., Luciano, R.: Nonlocal inflected nano-beams: a stress-driven approach of bi-Helmholtz type. Compos. Struct. 200, 239–245 (2018)

    Article  Google Scholar 

  26. Mahmoudpour, E., Hosseini-Hashemi, S.H., Faghidian, S.A.: Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl. Math. Model. 57, 302–315 (2018)

    Article  MathSciNet  Google Scholar 

  27. Apuzzo, A., Barretta, R., Fabbrocino, F., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity. J. Appl. Comput. Mech. 5, 402–413 (2019)

    Google Scholar 

  28. Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 136, 38–52 (2019)

    Article  MathSciNet  Google Scholar 

  29. Bažant, Z.P., Jirásek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  30. Borino, G., Failla, B., Parrinello, F.: A symmetric nonlocal damage theory. Int. J. Solids Struct. 40, 3621–3645 (2003)

    Article  Google Scholar 

  31. Koutsoumaris, C.C., Eptaimeros, K.C., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Article  Google Scholar 

  32. Koutsoumaris, C.C., Eptaimeros, K.G.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body. Acta Mech. 229, 3629–3649 (2018)

    Article  MathSciNet  Google Scholar 

  33. Eptaimeros, K.G., Koutsoumaris, C.C., Dernikas, I.T., Zisis, T.: Dynamical response of an embedded nanobeam by using nonlocal integral stress models. Compos. B 150, 255–268 (2018)

    Article  Google Scholar 

  34. Challamel, N.: Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models. Comptes Rendus Mécanique 346, 320–335 (2018)

    Article  Google Scholar 

  35. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  36. Polizzotto, C.: Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38, 7359–7380 (2001)

    Article  MathSciNet  Google Scholar 

  37. Jirásek, M.: Nonlocal theories. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2018)

    Google Scholar 

  38. Barretta, R., Marotti de Sciarra, F.: Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int. J. Eng. Sci. 130, 187–198 (2018)

    Article  MathSciNet  Google Scholar 

  39. Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Aifantis versus Lam strain gradient models of Bishop elastic rods. Acta Mech. 230, 2799–2812 (2019)

    Article  MathSciNet  Google Scholar 

  40. Walker, P.: Examples and Theorems in Analysis. Springer, London (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

As discussed in Sect. 5.1, the free end displacements of the rod are independent of the nonlocal parameter. The correctness of this finding can be mathematically demonstrated. To prove the accuracy of the observations, we substitute Eq. (2) into Eq. (1) and obtain the following equation:

$$\begin{aligned} \sigma (x)=\left[ 1-\int \limits _a^b {\alpha (\left| {x-\xi } \right| ,e_{0} l_{i} )\hbox {d}\xi } \right] E\varepsilon (x)+\int \limits _a^b {\alpha (\left| {x-\xi } \right| ,e_{0} l_{i} )E\varepsilon (\xi )\hbox {d}\xi }. \end{aligned}$$
(A.1)

Multiplying both sides of Eq. (A.1) by \(\hbox {d}\chi \) and integrating over the domain yields

$$\begin{aligned} \frac{1}{E}\int \limits _a^b {\sigma (\chi )} \hbox {d}\chi =\int \limits _a^b {\varepsilon (\chi )} \hbox {d}\chi +\int \limits _a^b {\left( {\int \limits _a^b {\alpha (\left| {\chi -\xi } \right| ,e_{0} l_{i} )[\varepsilon (\xi )-\varepsilon (\chi )]\hbox {d}\xi } } \right) } \hbox {d}\chi . \end{aligned}$$
(A.2)

Now, let us define a function as follows:

$$\begin{aligned} h(\chi ,\xi )=\alpha (\left| {\chi -\xi } \right| ,e_{0} l_{i} )[\varepsilon (\xi )-\varepsilon (\chi )]. \end{aligned}$$
(A.3)

According to Fubini’s theorem [40], we have

$$\begin{aligned} \int \limits _a^b {\left( {\int \limits _a^b {\alpha (\left| {\chi -\xi } \right| ,e_{0} l_{i} )\varepsilon (\xi )\hbox {d}\xi } } \right) } \hbox {d}\chi =\int \limits _a^b {\left( {\int \limits _a^b {\alpha (\left| {\chi -\xi } \right| ,e_{0} l_{i} )\varepsilon (\chi )\hbox {d}\xi } } \right) } \hbox {d}\chi . \end{aligned}$$
(A.4)

Using Eqs. (A.2) and (A.4), we obtain

$$\begin{aligned} \frac{1}{E}\int \limits _a^b {\sigma (\chi )} \hbox {d}\chi =\int \limits _a^b {\varepsilon (\chi )} \hbox {d}\chi . \end{aligned}$$
(A.5)

Recalling that \(\varepsilon (\chi )={\hbox {d}U} / {\hbox {d}\chi }\), Eq. (A.5) becomes

$$\begin{aligned} U(b)=\frac{1}{E}\int \limits _a^b {\sigma (\chi ,t)} \hbox {d}\chi +U(a). \end{aligned}$$
(A.6)

It can be seen from Eq. (A.6) that the free end displacement is independent of the nonlocal kernel function and the nonlocal parameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneshi, M.A., Ghavanloo, E. & Fazelzadeh, S.A. Well-posed nonlocal elasticity model for finite domains and its application to the mechanical behavior of nanorods. Acta Mech 231, 4019–4033 (2020). https://doi.org/10.1007/s00707-020-02749-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02749-w

Navigation