Skip to main content
Log in

Small-scale effects in nanorods

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The Eringen model of nonlocal elasticity provides an effective theoretical tool to assess small-scale effects in carbon nanotubes (CNTs). A variational formulation of the nonlocal elastostatic problem is proposed in this paper. The merit of the variational treatment, over standard ones based on integration of a second-order differential equation, consists in revealing a simple basic analogy. According to this analogy, the nonlocality effect is simulated by prescribing an axial distortion linearly depending on the first derivative of the axial load intensity. The nonlocal elastostatic problem can then be solved by standard tools of structural analysis with prescription of equivalent imposed distortions. Examples of nanorods with one fixed and one free end and with fixed ends are explicitly carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marotti de Sciarra F.: Nonlocal and gradient rate plasticity. Int. J. Solids Struct. 41(26), 7329–7349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Marotti de Sciarra F.: Variational formulations, convergence and stability properties in nonlocal elastoplasticity. Int. J. Solids Struct. 45, 2322–2354 (2008)

    Article  MATH  Google Scholar 

  3. Marotti de Sciarra, F.: A finite element for nonlocal elastic analysis. In: Coupled Problems, IV International Conference on Computational Methods for Coupled Problems in Science and Engineering, 496505, Greek (2011)

  4. Marotti de Sciarra F.: Hardening plasticity with nonlocal strain damage. Int. J. Plast. 34, 114–138 (2012)

    Article  Google Scholar 

  5. Marotti de Sciarra F.: Novel variational formulations for nonlocal plasticity. Int. J. Plast. 25, 302–331 (2009)

    Article  MATH  Google Scholar 

  6. Marotti de Sciarra F.: On non-local and non-homogeneous elastic continua. Int. J. Solids Struct. 46, 651–676 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Marotti de Sciarra F.: A nonlocal model with strain-based damage. Int. J. Solids Struct. 46, 4107–4122 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang Q., Liew K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  9. Aydogdu M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 41, 1651–1655 (2009)

    Article  Google Scholar 

  10. Phadikar J.K., Pradhan S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comp. Mat. Sci. 49, 492–499 (2010)

    Article  Google Scholar 

  11. Demir Ç., Demir Ç.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 35, 2053–2067 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Roque C.M.C., Ferreira A.J.M., Reddy J.N.: Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 49, 976–984 (2011)

    Article  MATH  Google Scholar 

  13. Aydogdu M.: Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Comm. 43, 34–40 (2012)

    Article  Google Scholar 

  14. Arash B., Wang Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comp. Mat. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  15. Kazemi-Lari M.A., Fazelzadeh S.A., Ghavanloo E.: Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation. Physica E 44, 1623–1630 (2012)

    Article  Google Scholar 

  16. Lim C.W., Xu R.: Analytical solutions for coupled tension-bending of nanobeam-columns considering nonlocal size effects. Acta Mech. 223, 789–809 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mahmoud F.F., Eltaher M.A., Alshorbagy A.E., Meletis E.I.: Static analysis of nanobeams including surface effects by nonlocal finite elements. J. Mech. Sci. Tech. 26(11), 3555–3563 (2012)

    Article  Google Scholar 

  18. Pradhan S.C.: Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory. Finite Elem. Anal. Des. 50, 8–20 (2012)

    Article  Google Scholar 

  19. Thai H.-T., Vo T.P.: A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 54, 58–66 (2012)

    Article  MathSciNet  Google Scholar 

  20. De Rosa M.A., Franciosi C.: A simple approach to detect the nonlocal effects in the static analysis of Euler–Bernoulli and Timoshenko beams. Mech. Res. Commun. 48, 66–69 (2013)

    Article  Google Scholar 

  21. Eltaher M.A., Alshorbagy A.E., Mahmoud F.F.: Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37, 4787–4797 (2013)

    Article  MathSciNet  Google Scholar 

  22. Eltaher M.A., Emam S.A, Mahmoud F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  23. Emam, S.A.: A general nonlocal nonlinear model for buckling of nanobeams. Appl. Math. Modelling. 37(10–11), 6929–6939 (2013)

    Google Scholar 

  24. Fang B., Zhen Y-X., Zhang C-P., Tang Y.: Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl. Math. Model. 37, 1096–1107 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ghannadpour S.A.M., Mohammadi B., Fazilati J.: Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96, 584–589 (2013)

    Article  Google Scholar 

  26. Şimşek M., Yurtcu H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  27. Wang B.L., Wang K.F.: Vibration analysis of embedded nanotubes using nonlocal continuum theory. Composites: Part B 47, 96–101 (2013)

    Article  Google Scholar 

  28. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  29. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  30. Romano G., Diaco M., Barretta R.: Variational formulation of the first principle of continuum thermodynamics. Continuum Mech. Thermodyn. 22(3), 177–187 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Barretta R.: Analogies between Kirchhoff plates and Saint–Venant beams under torsion. Acta Mech. 224, 2955–2964 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Romano G., Barretta R., Barretta A.: On Maupertuis principle in dynamics. Rep. Math. Phys. 63(3), 331–346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Romano G., Barretta R., Diaco M.: Algorithmic tangent stiffness in elastoplasticity and elastoviscoplasticity: a geometric insight. Mech. Res. Comm. 37(3), 289–292 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Romano G., Barretta R.: Covariant hypo-elasticity. Eur. J. Mech. A-Solids 30(6), 1012–1023 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Romano G., Barretta R.: On Euler’s stretching formula in continuum mechanics. Acta Mech. 224, 211–230 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Romano G., Barretta R.: Geometric constitutive theory and frame invariance. Int. J. Non-linear Mech. 51, 75–86 (2013)

    Article  Google Scholar 

  37. Barretta R.: On the relative position of twist and shear centres in the orthotropic and fiberw homogeneous SaintVenant beam theory. Int. J. Solids Struct. 49, 3038–3046 (2012)

    Article  Google Scholar 

  38. Barretta R.: On Cesàro–Volterra method in orthotropic Saint-Venant beam. J. Elast. 112, 233–253 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Irschik H.: Analogies between bending of plates and torsion problem. J. Eng. Mech. 117(11), 2503–2508 (1991)

    Article  Google Scholar 

  40. Irschik H.: Analogy between refined beam theories and the Bernoulli–Euler theory. Int. J. Solids Struct. 28(9), 1105–1112 (1991)

    Article  MATH  Google Scholar 

  41. Furukawa T., Irschik H.: Body-force analogy for one-dimensional coupled dynamic problems of thermoelasticity. J. Therm. Stresses 28(4), 455–464 (2005)

    Article  Google Scholar 

  42. Irschik H., Gusenbauer M.: Body force analogy for transient thermal stresses. J. Therm. Stresses 30(9-10), 965–975 (2007)

    Article  Google Scholar 

  43. Irschik H., Krommer M., Zehetner C.: A generalized body force analogy for the dynamic theory of thermoelasticity. J. Therm. Stresses 35(1–3), 235–247 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Barretta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barretta, R., Marotti de Sciarra, F. & Diaco, M. Small-scale effects in nanorods. Acta Mech 225, 1945–1953 (2014). https://doi.org/10.1007/s00707-013-1034-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1034-8

Keywords

Navigation