Skip to main content
Log in

Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Nonlocal elasticity is addressed in terms of integral convolutions for structural models of any dimension, that is bars, beams, plates, shells and 3D continua. A characteristic feature of the treatment is the recourse to the theory of generalised functions (distributions) to provide a unified presentation of previous proposals. Local-nonlocal mixtures are also included in the analysis. Boundary effects of convolutions on bounded domains are investigated, and analytical evaluations are provided in the general case. Methods for compensation of boundary effects are compared and discussed with a comprehensive treatment. Estimates of limit behaviours for extreme values of the nonlocal parameter are shown to give helpful information on model properties, allowing for new comments on previous proposals. Strain-driven and stress-driven models are shown to emerge by swapping the mechanical role of input and output fields in the constitutive convolution, with stress-driven elastic model leading to well-posed problems. Computations of stress-driven nonlocal one-dimensional elastic models are performed to exemplify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  2. Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  3. Vila, J., Fernández-Sáez, J., Zaera, R.: Nonlinear continuum models for the dynamic behavior of 1D microstructured solids. Int. J. Solids Struct. 117, 111–122 (2017)

    Article  Google Scholar 

  4. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3–5), 305–312 (2003)

    Article  Google Scholar 

  5. Benvenuti, E., Simone, A.: One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech. Res. Commun. 48, 46–51 (2013)

    Article  Google Scholar 

  6. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21, 313–342 (1987)

    Google Scholar 

  8. Altan, S.B.: Uniqueness of the initial-value problems in nonlocal elastic solids. Int. J. Solids Struct. 25, 1271–1278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pisano, A.A., Fuschi, P.: Closed form solution for a nonlocal elastic bar in tension. Int. J. Solids Struct. 40, 13–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Y., Zhu, X., Dai, H.: Exact solutions for the static bending of Euler–Bernoulli beams using Eringen two-phase local/nonlocal model. AIP Adv. 6(8), 085114 (2016). https://doi.org/10.1063/1.4961695

    Article  ADS  Google Scholar 

  11. Fernández-Sáez, J., Zaera, R.: Vibrations of Bernoulli–Euler beams using the two-phase nonlocal elasticity theory. Int. J. Eng. Sci. 119, 232–248 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zhu, X.W., Wang, Y.B., Dai, H.H.: Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model. Int. J. Eng. Sci. 116, 130–140 (2017)

    Article  MathSciNet  Google Scholar 

  13. Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)

    Article  Google Scholar 

  14. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  Google Scholar 

  15. Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)

    Article  Google Scholar 

  16. Wing, G.M.: A Primer on Integral Equations of the first kind: the problem of deconvolution and unfolding. With the assistance of J. D. Zahrt. Society for Industrial and Applied Mathematics, Philadelphia, PA (1991)

  17. Challamel, N., Wang, C.M.: The small length scale effect for a non- local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  18. Li, C., Yao, L.Q., Chen, W.Q., Li, S.: Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015)

    Article  Google Scholar 

  19. Eringen, A.C.: Nonlocal continuum mechanics based on distributions. Int. J. Eng. Sci. 44, 141–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley Publishing Company, Boston (1988)

    MATH  Google Scholar 

  21. Sobolev, S.L.: Sur un théoréme d’analyse fonctionnelle. Matematicheskiǐ Sbornik 4(46) (3), 471–497 (1938)

  22. Schwartz, L.-M.: Théorie des distributions. 2 vols., 1950/1951, 2nd Ed. (1966). Hermann, Paris (1950)

  23. Yosida, K.: Functional Analysis. Springer, New York (1980)

    MATH  Google Scholar 

  24. Pijaudier-Cabot, G., Bazant, Z.P.: Nonlocal damage theory. J. Eng. Mech. 113, 1512–1533 (1987)

    Article  MATH  Google Scholar 

  25. Polizzotto, C.: Remarks on some aspects of nonlocal theories in solid mechanics. In: Proceedings of the 6th Congress of Italian Society for Applied and Industrial Mathematics (SIMAI), Cagliari, Italy (2002)

  26. Borino, G., Failla, B., Parrinello, F.: A symmetric nonlocal damage theory. Int. J. Solids Struct. 40(13–14), 3621–3645 (2003)

    Article  MATH  Google Scholar 

  27. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  28. Malagú, M., Benvenuti, E., Simone, A.: One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: a molecular structural mechanics characterization. Europ. J. Mech. A Solids 54, 160–170 (2015)

    Article  ADS  Google Scholar 

  29. Jirásek, M., Rolshoven, S.: Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 41, 1553–1602 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polizzotto, C., Fuschi, P., Pisano, A.A.: A strain-difference-based nonlocal elasticity model. Int. J. Solids Struct. 41(9–10), 2383–2401 (2004)

    Article  MATH  Google Scholar 

  31. Romano, G., Barretta, R., Diaco, M.: The geometry of non-linear elasticity. Acta Mech. 225(11), 3199–3235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Romano, G., Diaco, M., Barretta, R.: Variational formulation of the first principle of continuum thermodynamics. Contin. Mech. Thermodyn. 22(3), 177–187 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Romano, G., Barretta, R., Diaco, M.: A geometric rationale for invariance, covariance and constitutive relations. Contin. Mech. Thermodyn. 30, 175–194 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)

    Article  MathSciNet  Google Scholar 

  35. Tuna, M., Kirca, M.: Respond to the comment letter by Romano and Barretta on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams”. Int. J. Eng. Sci. 116, 141–144 (2017)

    Article  MathSciNet  Google Scholar 

  36. Romano, G., Barretta, R.: Comment on the paper exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams by Meral Tuna & Mesut Kirca. Int. J. Eng. Sci. 109, 240–242 (2016)

    Article  MathSciNet  Google Scholar 

  37. Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Barretta.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, G., Luciano, R., Barretta, R. et al. Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mech. Thermodyn. 30, 641–655 (2018). https://doi.org/10.1007/s00161-018-0631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0631-0

Keywords

Navigation