Skip to main content
Log in

Nonlocal elasticity and boundary condition paradoxes: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nonclassical continuum mechanics theories have seen a rise in implementation over the past several years due to the increased research into micro-/nanoelectromechanical systems (MEMS/NEMS), micro-/nanoresonators, carbon nanotubes (CNTs), etc. Typically, these systems exist in the range of several nanometers to the micro-scale. There are several available theories that can capture phenomena inherent to nanoscale structures. Of the available theories, researchers utilize Eringen’s nonlocal theory most frequently because of its ease of implementation and seemingly accurate results for specific loading conditions and boundary conditions. Eringen’s integral nonlocal theory, which leads to a set of integro-partial differential equations, is difficult to solve; therefore, the integral form was reduced to a set of singular partial differential equations using a Green-type attenuation function. However, a so-called paradox has arisen between the integral and differential formulations of Eringen’s nonlocal elasticity. For certain boundary and loading conditions, instead of the expected softening effect inherent in nonlocal particle interactions, some researchers have found a stiffening effect. Still, others have found no variation from those results found using classical theories. As such, the discrepancies between the integral and differential forms have been the subject of debate for nearly two decades, with several proposed resolutions published in recent years. This paper serves to review and consolidate existing theories in nonlocal elasticity along with selected theories in nonclassical continuum mechanics, the utilization of Eringen’s nonlocal elasticity in beams, shells, and plates, the existing discrepancies and proposed solutions, and recommendations for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to time limitations.

Abbreviations

C-C:

Clamped-clamped

CCCC:

All clamped plate boundary conditions

CCFF:

Two sides clamped, two sides free boundary conditions

C-F:

Clamped-free (cantilever)

C-FP:

Cantilever beam with concentrated load P at the free end

C-H:

Clamped-hinged

CNC:

Carbon nanocone

CNT:

Carbon nanotube

CPT:

Classical plate theory

DQM:

Differential quadrature method

DWCNT:

Double-walled carbon nanotube

EBT:

Euler-Bernoulli beam theory

FEM:

Finite element method

FGM:

Functionally graded material

FOPT:

First-order plate theory

H-H:

Hinged-hinged

HHCC:

Two sides hinged, two sides clamped boundary conditions

HHHH:

All hinged plate boundary conditions

HOPT:

Higher-order plate theory

HSDT:

Higher-order shear deformation theory

KPT:

Kirchhoff’s plate theory

MEMS:

Micro-electromechanical system

MPT:

Mindlin’s plate theory

MWCNT:

Multiwalled carbon nanotube

NEMS:

Nanoelectromechanical system

SDM:

Stress-driven model

SGM:

Strain gradient method

SLGS:

Single-layer graphene sheets

SSSD:

Simply supported beam with uniformly distributed load

SWCNT :

Single-walled carbon nanotube

TBT:

Timoshenko beam theory

WRA:

Weighted residual approach

A :

Cross-sectional area

C :

Compliance tensor

E :

Young’s modulus

e 0 :

Material parameter

f :

Body force

F :

Distributed loading

I :

Second area moment of inertia

L :

Length

l c :

Nonlocal length scale parameter

M :

Bending moment

m 0 :

Mass density

P :

Concentrated point force

Q :

Shear force

q :

Axial force

T :

Kinetic energy

U :

Potential energy

u :

Displacement field

V :

Elastic domain

w :

Transverse displacement

α :

Regularizing parameter: gradient model

δ :

Dirac delta

ε :

Strain field

κ :

Nonlocal parameter

λ :

Elastic modulus

μ :

Shear modulus

ξ :

Volume fraction

ρ :

Material density

σ :

Nonlocal stress tensor

τ :

Local stress tensor

ω :

Frequency

References

  • Aifantis EC (1984) On the microstructural origin of certain inelastic models, transactions of ASME. J Eng Mater Technol 106:326–330

    Article  CAS  Google Scholar 

  • Aifantis EC (1987) The physics of plastic deformation. Int J Plast 3:211–247

    Article  Google Scholar 

  • Aifantis EC (1999a) Gradient deformation models at nano, micro, and macro scales. J Eng Mater Technol 121:189–202

    Article  Google Scholar 

  • Aifantis EC (1999b) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  • Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35:259–280

    Article  Google Scholar 

  • Aifantis EC (2009) Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst Technol 15:109–115

    Article  CAS  Google Scholar 

  • Aifantis EC (2011a) A note on gradient elasticity and nonsingular crack fields. J Mech Behav Mater 20:103–105

    Article  Google Scholar 

  • Aifantis EC (2011b) On the gradient approach - relation to Eringen's nonlocal theory. Int J Eng Sci 49:1367–1377

    Article  Google Scholar 

  • Aifantis EC (2014) On non-singular GRADELA crack fields. Theor Appl Mech Lett 4:051005/1–051005/7

    Article  Google Scholar 

  • Aifantis EC (2016) Internal length gradient (ILG) material mechanics across scales & disciplines. Adv Appl Mech 49:1–110

    Article  Google Scholar 

  • Aifantis KE, Willis JR (2005) The role of interfaces in enhancing the yield strength of composites and polycrystals. J Mech Phys Solids 53(5):1047–1070

    Article  Google Scholar 

  • Al-Rub RKA, Voyiadjis GZ (2006) A physically based gradient plasticity theory. Int J Plast 22:654–684

    Article  Google Scholar 

  • Altan SB (1989) Existence in nonlocal elasticity. Arch Mech 41(1):25–36

    Google Scholar 

  • Amara K, Tounsi A, Mechab I, Adda-Bedia EA (2010) Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field. Appl Math Model 34(12):3933–3942

    Article  Google Scholar 

  • Ansari R, Arash B (2013) Nonlocal Flügge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions. J Appl Mech 80(2)

  • Ansari R, Torabi J (2016) Numerical study on the free vibration of carbon nanocones resting on elastic shell foundation using nonlocal shell model. Appl Phys A 122(12):1073

    Article  Google Scholar 

  • Apuzzo A, Barretta R, Luciano R, Marotti de Sciarra F, Penna R (2017) Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos Part B 123:105–111

    Article  Google Scholar 

  • Apuzzo A, Bartolomeo C, Luciano R, Scorza D (2020) Novel local/nonlocal formulation of the stress-driven model through closed-form solution for higher vibration modes. Compos Struct 232:112688

    Article  Google Scholar 

  • Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51(1):303–313

    Article  CAS  Google Scholar 

  • Arash B & Wang Q (2014) “A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes.” Modeling of carbon nanotubes, graphene and their composites 57–82

  • Askari H, Younesian D, Esmailzadeh E, Cveticanin (2017) Nonlocal effect in carbon nanotube resonators: a comprehensive review. Adv Mech Eng 9(2):1–24

    Article  Google Scholar 

  • Askes H, Aifantis EC (2009) Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys Rev B 80:195412

    Article  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  • Askes H, Benett T, Aifantis EC (2007) A new formulation and C0-implementation of dynamically consistent gradient elasticity. Int J Numer Methods Eng 72:111–116

    Article  Google Scholar 

  • Barretta R, Marotti de Sciarra F (2015) Analogies between nonlocal and local Bernoulli–Euler nanobeams. Arch Appl Mech 85(1):89–99

    Article  Google Scholar 

  • Barretta R, Feo L, Luciano R, Marotti de Sciarra F (2016) Application of an enhanced version of the Eringen differential model to nanotechnology. Compos Part B 96:274–280

    Article  Google Scholar 

  • Barretta R, Ali Faghidian S, Luciano R (2018) Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech Adv Mater Struct 0(0):1–9

    Google Scholar 

  • Benvenuti E, Simone A (2013) One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech Res Commun 48:46–51

    Article  Google Scholar 

  • Bian QB, Bose SK, Shukla RC (2008) Vibrational and thermodynamic properties of metals from a model embedded-atom potential. J Phys Chem Solids 69(1):168–181

    Article  CAS  Google Scholar 

  • Cao P, Niu K (2020) New unified model of composite sandwich panels/beams buckling introducing interlayer shear effects. Compos Struct 252:112722

    Article  Google Scholar 

  • Ceballes S, Abdelkefi A (2020) Observations on the general nonlocal theory applied to axially loaded nanobeams. Microsyst Technol:1–23

  • Challamel N, Wang CM (2008) The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19(34)

  • Challamel N, Zhang Z, Wang CM, Reddy JN, Wang Q, Michelitsch T, Collet B (2014) On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch Appl Mech 84(9–11):1275–1292

    Article  Google Scholar 

  • Challamel N, Reddy JN, Wang CM (2016) Eringen’s stress gradient model for bending of nonlocal beams. J Eng Mech 142(12):04016095

    Google Scholar 

  • Chen Y, Lee JD (2003) Determining material constants in micromorphic theory through phonon dispersion relations. Int J Eng Sci 41(8):871–886

    Article  CAS  Google Scholar 

  • Chen Y, Lee JD, Eskandarian A (2004) Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solids Struct 41(8):2085–2097

    Article  Google Scholar 

  • Civalek Ö, Akgöz B (2013) Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. Comput Mater Sci 77:295–303

    Article  CAS  Google Scholar 

  • Cochran W (1973) The dynamics of atoms in crystals, London: Edward Arnold Limited

  • Cosserat E & Cosserat F (1909) Theory of deformable bodies, Paris: Scientific Library A. Hermann and Sons

  • Daneshmehr A, Rajabpoor A (2014) Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions. Int J Eng Sci 82:84–100

    Article  Google Scholar 

  • De Domenico D, Askes H, Aifantis EC (2018) Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. Int J Solids Struct 158:176–190

    Article  Google Scholar 

  • Demir Ç, Civalek Ö (2017) On the analysis of microbeams. Int J Eng Sci 121:14–33

    Article  Google Scholar 

  • Demiray H (1977) A nonlocal continuum theory for diatomic elastic solids. Int J Eng Sci 15(4):623–644

    Article  Google Scholar 

  • Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101(2)

  • Dutton DH, Brockhouse BN, Miller AP (1972) Crystal dynamics of platinum by inelastic neutron scattering. Can J Phys 50(23):2915–2927

    Article  CAS  Google Scholar 

  • Eltaher MA, Khater ME, Emam SA (2016) A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Model 40(5–6):4109–4128

    Article  Google Scholar 

  • Eptaimeros KG, Koutsoumaris CC, Tsamasphyros GJ (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80

    Article  Google Scholar 

  • Eringen AC (1966) Mechanics of micromorphic materials. Appl Mech:131–138

  • Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435

    Article  Google Scholar 

  • Eringen AC (1974) Nonlocal elasticity and waves. Continuum Mech Aspects Geodyn Rock Fract Mech 12:81–105

    Google Scholar 

  • Eringen AC (1976) Nonlocal polar field theories. Continuum Phys:205–264

  • Eringen AC (1977) Screw dislocation in non-local elasticity. J Phys D Appl Phys 10(5):671–678

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9)

  • Eringen AC (1987) Theory of nonlocal elasticity and some applications. Res Mech 21(4):313–342

    Google Scholar 

  • Eringen AC (2002) Nonlocal continuum field theories. Springer-Verlag Inc., New York

    Google Scholar 

  • Eringen AC (2006) Nonlocal continuum mechanics based on distributions. Int J Eng Sci 44(3–4):141–147

    Article  Google Scholar 

  • Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  Google Scholar 

  • Fakher M, Hosseini-Hashemi S (2017) Bending and free vibration analysis of nanobeams by differential and integral forms of nonlocal strain gradient with Rayleigh–Ritz method. Mater Res Express 4(12):125025

    Article  Google Scholar 

  • Faroughi S, Goushegir SMH, Khodaparast H, Friswell MI (2017) Nonlocal elasticity in plates using novel trivial functions. Int J Mech Sci 130:221–233

    Article  Google Scholar 

  • Faroughi S, Rahmani A, Friswell MI (2020) On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model. Appl Math Model 80:169–190

    Article  Google Scholar 

  • Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248

    Article  Google Scholar 

  • Fernández-Sáez J, Zaera R, Loya JA, Reddy JN (2016) Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49(10):2245–2271

    Article  Google Scholar 

  • Forest S, Aifantis EC (2010) Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int J Solids Struct 47:3367–3376

    Article  CAS  Google Scholar 

  • Fotouhi MM, Firouz-Abadi RD, Haddadpour H (2013) Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model. Int J Eng Sci 64:14–22

    Article  Google Scholar 

  • Ghavanloo E, Fazelzadeh SA (2014) Nonlocal shell model for predicting axisymmetric of spherical shell-like nanostructures. Mech Adv Mater Struct 22(7):597–603

    Article  Google Scholar 

  • Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52(6):1379–1406

    Article  Google Scholar 

  • Gurtin ME, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J Mech Phys Solids 57(3):405–421

    Article  CAS  Google Scholar 

  • Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press

  • Gutkin MY, Aifantis EC (1999) Dislocations in the theory of gradient elasticity. Scr Mater 40:559–566

    Article  CAS  Google Scholar 

  • Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(18):2496–2510

    Article  Google Scholar 

  • Heireche H, Tounsi A, Benzair A (2008) Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology 19(18)

  • Hosseini-Hashemi S, Zare M, Nazemnezhad R (2013) An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity. Compos Struct 100:290–299

    Article  Google Scholar 

  • Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes. J Mech Phys Solids 56(12):3475–3485

    Article  CAS  Google Scholar 

  • Jishi RA, Vankataraman L, Dresselhaus MS, Dresselhaus G (1993) Phonon modes in carbon nanotubes. Chem Phys Lett 209(1–2):77–82

    Article  CAS  Google Scholar 

  • Jung WY, Han SC (2014) Nonlocal elasticity theory for transient analysis of higher-order shear deformable nanoscale plates. J Nanomater 2014

  • Ke LL, Liu C, Wang YS (2015) Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions. Phys E 66:93–106

    Article  CAS  Google Scholar 

  • Khodabakhshi P, Reddy JN (2015) A unified integro-differential nonlocal model. Int J Eng Sci 95:60–75

    Article  Google Scholar 

  • Kiani K (2013) Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories. Int J Mech Sci 68:16–34

    Article  Google Scholar 

  • Koutsoumaris CC, Eptaimeros KG, Tsamasphyros GJ (2017) A different approach to Eringen's nonlocal integral stress model with applications for beams. Int J Solids Struct 112:222–238

    Article  Google Scholar 

  • Lazar M, Maugin GA, Aifantis EC (2005) On dislocations in a special class of generalized elasticity. Phys Status Solidi B 242:2365–2390

    Article  CAS  Google Scholar 

  • Lazar M, Maugin GA, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 43:1404–1421

    Article  Google Scholar 

  • Liang Y, Han Q (2014) Prediction of the nonlocal scaling parameter for graphene sheet. Eur J Mech A/Solids 45:153–160

    Article  Google Scholar 

  • Lim CW (2010) On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl Math Mech 31(1):37–54

    Article  Google Scholar 

  • Liu C, Ke LL, Wang YS, Yang J, Kitipornchai S (2013) Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct 106:167–174

    Article  Google Scholar 

  • Lu P, Lee HP, Lu C, Zhang PQ (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys 99(7)

  • Lurie S, Volkov-Bogorodsky D, Leontive A, Aifantis EC (2011) Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int J Eng Sci 49:1517–1525

    Article  Google Scholar 

  • Lurie S, Belov P, Solyaev Y, Aifantis EC (2017) On one class of applied gradient models with simplified boundary problems. Mater Phys Mech 32:353–369

    Google Scholar 

  • Lynn JW, Smith HG, Nicklow RM (1973) Lattice dynamics of gold. Phys Rev B 8(8):3493–3499

    Article  CAS  Google Scholar 

  • Mahmoudpour E, Hosseini-Hashemi SH, Faghidian SA (2018) Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl Math Model 57:302–315

    Article  Google Scholar 

  • Maranganti R, Sharma P (2007) A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J Mech Phys Solids 55(9):1823–1852

    Article  CAS  Google Scholar 

  • Marotti de Sciarra F (2014) Finite element modelling of nonlocal beams. Phys E 59:144–149

    Article  Google Scholar 

  • Mindlin RD (1963) Microstructure in linear elasticity. Columbia University, New York

    Book  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  • Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–447

    Article  Google Scholar 

  • Mokios G, Aifantis EC (2012) Gradient effects in micro-/nanoindentation. Mater Sci Technol 28:1072–1078

    Article  CAS  Google Scholar 

  • Murmu T, Pradhan SC (2009a) Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys E 41(7):1232–1239

    Article  CAS  Google Scholar 

  • Murmu T, Pradhan S (2009b) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Phys E 41(8):1451–1456

    Article  Google Scholar 

  • Nami MR, Janghorban M (2014) Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant. Compos Struct 111:349–353

    Article  Google Scholar 

  • Nilssom G, Rolandson S (1973) Lattice dynamics of copper at 89 K. Phys Rev B 7:2393–2400

    Article  Google Scholar 

  • Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys E 88:194–200

    Article  Google Scholar 

  • Norouzzadeh A, Ansari R, Rouhi H (2017) Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl Phys A 123(5):330

    Article  Google Scholar 

  • Oskouie MF, Ansari R, Rouhi H (2018) Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach. Acta Mech Sinica 34(5):871–882

    Article  Google Scholar 

  • Özgür Yayli M, Yerel Kandemir S (2017) Bending analysis of a cantilever Nanobeam with end forces by Laplace transform. Int J Eng Appl Sci 9(2):103–111

    Google Scholar 

  • Peddieson, J., Buchanan, G. R., & McNitt, R. P. “Application of nonlocal continuum models to nanotechnology,” Int J Eng Sci, vol. 41, no. 3–5, pp. 305–312, 2003, 305

  • Pilafkan R, Kaffash Irzarahimi S, Asbaghian Namin SF (2017) Biaxial buckling of single layer graphene sheet based on nonlocal plate model and molecular dynamics simulation. Int J Mater Metall Eng 11(4):301–306

    Google Scholar 

  • Pisano AA, Fuschi P (2003) Closed form solution for a nonlocal elastic bar in tension. Int J Solids Struct 40(1):13–23

    Article  Google Scholar 

  • Pisano AA, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2D finite element based solutions. Int J Solids Struct 46(21):3836–3849

    Article  Google Scholar 

  • Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38:7359–7380

    Article  Google Scholar 

  • Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40(26):7399–7423

    Article  Google Scholar 

  • Polyanin A, Manzhirov A (2008) Handbook of integral equations. CRC Press, New York

    Book  Google Scholar 

  • Polyzos D, Fotiadis DI (2012) Derivation of Mindlin’s first and second-strain gradient elasticity theory via simple lattice and continuum models. Int J Solids Struct 49(3–4):470–480

    Article  Google Scholar 

  • Pradhan SC, Kumar A (2011) Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos Struct 93(2):774–779

    Article  Google Scholar 

  • Pradhan SC, Phadikar JK (2009) Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys Lett A 373(11):1062–1069

    Article  CAS  Google Scholar 

  • Rahmani A, Faroughi S, Friswell MI (2020) The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory. Mech Syst Signal Process 144:106854

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    Article  CAS  Google Scholar 

  • Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48(11):1507–1518

    Article  Google Scholar 

  • Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103(2)

  • Romano G, Barretta R (2016) Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams”by Meral Tuna & Mesut Kirca. Int J Eng Sci 109:240–242

    Article  Google Scholar 

  • Romano G, Barretta R (2017a) Nonlocal elasticity in nanobeams: the stress-driven integral model. Int J Eng Sci 115:14–27

    Article  Google Scholar 

  • Romano G, Barretta R (2017b) Stress-driven versus strain-driven nonlocal integral model for elastic nanobeams. Compos Part B 114:184–188

    Article  Google Scholar 

  • Romano G, Barretta R, Diaco M, Marotti de Sciarra F (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Article  Google Scholar 

  • Romano G, Luciano R, Barretta R, Diaco M (2018) Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Contin Mech Thermodyn 30(3):641–655

    Article  Google Scholar 

  • Sari MS, Ceballes S, Abdelkefi A (2018) Nonlocal buckling analysis of functionally graded nano-plates subjected to biaxial linearly varying forces. Microsyst Technol 24(4):1935–1948

    Article  Google Scholar 

  • Shaat M, Abdelkefi A (2016) On a second order rotation gradient theory for linear elastic continua. Int J Eng Sci 100:74–98

    Article  Google Scholar 

  • Shaat M, Abdelkefi A (2017) New insights on the applicability of Eringen’s nonlocal theory. Int J Mech Sci 121:67–75

    Article  Google Scholar 

  • Shaat M, Faroughi S, Abasiniyan L (2017) Paradoxes of differential nonlocal cantilever beams: Reasons and a novel solution. arXiv preprint arXiv 1802:01494

    Google Scholar 

  • Şimşek M (2014) Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos Part B 56:621–628

    Article  Google Scholar 

  • Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94(11):7281–7287

    Article  CAS  Google Scholar 

  • Sun B, Aifantis EC (2014) Gradient elasticity formulations for micro/nanoshells. J Nanomater 2014:846370

    Article  Google Scholar 

  • Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  Google Scholar 

  • Toupin R (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  Google Scholar 

  • Tuna M, Kirca M (2016a) Exact solution of Eringen’s nonlocal integral model for vibration and buckling of Euler-Bernoulli beam. Int J Eng Sci 107:54–67

    Article  Google Scholar 

  • Tuna M, Kirca M (2016b) Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int J Eng Sci 105:80–92

    Article  Google Scholar 

  • Tuna M, Kirca M (2017a) Respond to the comment letter by Romano and Barretta on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams”. Int J Eng Sci 116:141–144

    Article  Google Scholar 

  • Tuna M, Kirca M (2017b) Bending, buckling and free vibration analysis of Euler Bernoulli Nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284

    Article  Google Scholar 

  • Voyiadjis GZ, Al-Rub RKA (2005) Gradient plasticity theory with a variable length scale parameter. Int J Solids Struct 42(14):3998–4029

    Article  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12)

  • Wang Q (2006) Axi-symmetric wave propagation of carbon nanotubes with non-local elastic shell model. Int J Struct Stab Dyn 6(02):285–296

    Article  Google Scholar 

  • Wang YZ, Li FM (2014) Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int J Non-Linear Mech 61:74–79

    Article  Google Scholar 

  • Wang Q, Liew KM (2007) Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A 363(3):236–242

    Article  CAS  Google Scholar 

  • Wang Q, Varadan VK (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659–666

    Article  Google Scholar 

  • Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16(1):178–190

    Article  Google Scholar 

  • Wang CM, Zhang YY, Sai Sudha Ramesh KS (2006) Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39:3904–3909

    Article  CAS  Google Scholar 

  • Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10)

  • Wang CM, Kitipornchai S, Lim CW, Eisenberger M (2008) Beam bending solutions based on nonlocal Timoshenko beam theory. J Eng Mech 134(6):475–481

    Google Scholar 

  • Wang CY, Murmu T, Adhikari S (2011) Mechanisms of nonlocal effect on the vibration of nanoplates. Appl Phys Lett 98(15)

  • Wang YB, Zhu XW, Dai HH (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. AIP Adv 6(8)

  • Warren JL, Wenzel RG, & Yarnell JL (1965) “Inelastic scattering of neutrons”. Vienna: International Atomic Energy Agency

  • Xu KY, Alnefaie KA, Abu-Hamdeh NH, Almitani KH, Aifantis EC (2013) Dynamic analysis of a gradient elastic polymeric fiber. Acta Mech Solida Sin 26:9–20

    Article  Google Scholar 

  • Xu KY, Alnefaie KA, Abu-Hamdeh NH, Almitani KH, Aifantis EC (2014) Free transverse vibrations of a double-walled carbon nanotube: gradient and internal inertia effects. Acta Mech Solida Sin 27:345–352

    Article  Google Scholar 

  • Xu XJ, Deng ZC, Zhang K, Xu W (2016) Observations of the softening phenomena in the nonlocal cantilever beams. Compos Struct 145:43–57

    Article  Google Scholar 

  • Xu X-J, Mu-Lian Z, Wang X-C (2017) On vibrations of nonlocal rods: boundary conditions, exact solutions and their asymptotics. Int J Eng Sci 119:217–231

    Article  Google Scholar 

  • Yang Y, Lim CW (2011) A new nonlocal cylindrical shell model for axisymmetric wave propagation in carbon nanotubes. Adv Sci Lett 4(1):121–131

    Article  CAS  Google Scholar 

  • Yang Q, Lim CW (2012) Thermal effects on buckling of shear deformable nanocolumns with von Kármán nonlinearity based on nonlocal stress theory. Nonlinear Analysis: Real World Applications 13(2):905–922

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  Google Scholar 

  • Yue Y, Xu KY, Aifantis EC (2015) Strain gradient and electric field gradient effects in piezoelectric cantilever beams. J Mech Behav Mater 24:121–127

    Article  Google Scholar 

  • Zang J, Fang B, Zhang YW, Yang TZ, Li DH (2014) Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Phys E 63:147–150

    Article  Google Scholar 

  • Zhang Y (2017) Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect. Int J Mech Sci 128-129:572–582

    Article  Google Scholar 

  • Zhang YQ, Liu GR, Wang JS (2004) Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 70(20)

  • Zhang YY, Wang CM, Tan VBC (2009) Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv Appl Math Mech 1(1):89–106

    Google Scholar 

  • Zhang YY, Wang CM, Challamel N (2010) Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J Eng Mech 136(5)

  • Zhang Z, Challamel N, Wang C (2013) Eringen’s small length scale coefficient for buckling of Timoshenko beam based on microstructred beam model. J Appl Phys 114(11):114902

    Article  Google Scholar 

  • Zhu X-W, Dai H-H (2012) Solution for a nonlocal elastic bar in tension. Sci China Phys Mech Astron 55(6):1059–1065

    Article  Google Scholar 

  • Zhu HX, Karihaloo BL (2008) Size-dependent bending of thin metallic films. Int J Plast 24:991–1007

    Article  Google Scholar 

  • Zhu X, Wang Y, Dai HH (2017) Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model. Int J Eng Sci 116:130–140

    Article  Google Scholar 

Download references

Funding

The authors, S. Ceballes and A. Abdelkefi, received funding support from the New Mexico Consortium, Los Alamos National Laboratory, and the National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ceballes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Mamadou Diallo, Abdessattar Abdelkefi, and Bhekie Mamba

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology Convergence in Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballes, S., Larkin, K., Rojas, E. et al. Nonlocal elasticity and boundary condition paradoxes: a review. J Nanopart Res 23, 66 (2021). https://doi.org/10.1007/s11051-020-05107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05107-y

Keywords

Navigation