Skip to main content
Log in

Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@Pt core-shell nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Co@Pt core-shell nanoparticles (NPs) were synthetized by a two-step reductive method using carbon (Vulcan XC-72) as a solid support. The NPs were characterized by X-ray diffraction, field emission gun scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. Their electrochemical performance was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry, and these showed that the Co@Pt NPs display an electrocatalytic activity towards the oxidation of glucose that is much better than that of plain Pt NPs. Under optimized conditions and at pH 7.0, the oxidation current of glucose at a working potential of −50 mV (vs. SCE) is linearly related to its concentration in the 1.0 to 30 mM range, and the detection limit is 0.3 mM (S/N = 3). It therefore covers the clinical range. The sensor also exhibits excellent stability and repeatability.

Co@Pt core-shell nanoparticles (NPs) display an electrocatalytic activity towards the oxidation of glucose that is much better than that of plain Pt NPs. The oxidation current for glucose is linearly related to its concentration in the 1.0 to 30 mM range, and the detection limit is 0.3 mM (S/N =3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang JP, Thomas DF, Chen AC (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997

    Article  CAS  Google Scholar 

  2. Wang B, Li B, Deng Q, Dong S (1998) Amperometric glucose biosensor based on sol–gel organic–inorganic hybrid material. Anal Chem 70:3170

    Article  CAS  Google Scholar 

  3. Yang MH, Yang YH, Liu YL, Shen GL, Yu RQ (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21:1125

    Article  CAS  Google Scholar 

  4. Chen X, Tian X, Zhao L, Huang Z, Oyama M (2014) Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with grapheme nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181:783

    Article  CAS  Google Scholar 

  5. Lin KC, Lin YC, Chen SM (2013) A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim Acta 96:164

    Article  CAS  Google Scholar 

  6. Lu WB, Qin XY, Asiri AM, Al-Youbi AO, Sun XP (2013) Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138:417

    Article  CAS  Google Scholar 

  7. Zhu J, Jiang J, Liu J, Ding R, Li Y, Ding H, Feng Y, Wei G, Huang X (2011) CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Adv 1:1020

    Article  CAS  Google Scholar 

  8. Ahmad R, Vaseem M, Tripathy N, Hahn YB (2013) Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. Anal Chem 85:10448

    Article  CAS  Google Scholar 

  9. Zhong AN, Luo XL, Chen LP, Wei SS, Liang YH, Li XC (2015) Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182:1197

    Article  CAS  Google Scholar 

  10. Park SJ, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046

    Article  CAS  Google Scholar 

  11. Song YY, Zhang D, Gao W, Xia XH (2005) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. J Chem Eur 11:2177

    Article  CAS  Google Scholar 

  12. Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161

    Article  CAS  Google Scholar 

  13. Li M, Bo XJ, Zhang YF, Han C, Guo LP (2014) One-pot ionic liquid-assisted synthesis of highly dispersed PtPd nanoparticles/reduced graphene oxide composites for nonenzymatic glucose detection. Biosens Bioelectron 56:223

    Article  CAS  Google Scholar 

  14. Chen XM, Wu GH, Cai ZX, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689

    Article  CAS  Google Scholar 

  15. Liu YY, Pang HA, Wei CZ, Hao MM, Zheng SS, Zheng MB (2014) Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Microchim Acta 181:1581

    Article  CAS  Google Scholar 

  16. Rollison DR (2003) Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299:698

    Google Scholar 

  17. Ma YW, Zhang HM, Zhong HX, Xu T, Jin H, Geng XY (2010) High active PtAu/C catalyst with core-shell structure for oxygen reduction reaction. Catal Commun 11:434

    Article  CAS  Google Scholar 

  18. Zhao Y, Yang X, Tian J, Wang F, Zhan L, Tian J (2010) Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. Int J Hydrog Energy 35:3249

    Article  CAS  Google Scholar 

  19. Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M (2012) Silica-metal core-shell nanostructures. Adv Colloid Interf Sci 170:28

    Article  CAS  Google Scholar 

  20. Lin R, Cao CH, Zhao TT, Huang Z, Li B, Wieckowski A, Ma JX (2013) Synthesis and application of core-shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells. J Power Sources 223:190

    Article  CAS  Google Scholar 

  21. Yang XJ, Wang YH, Liu YW, Jiang X (2013) A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core-shell nanorods. Electrochim Acta 108:39

    Article  CAS  Google Scholar 

  22. Chen XL, Pan HB, Liu HF, Du M (2010) Nonenzymatic glucose sensor based on flower-shaped Au@Pd core-shell nanoparticles-ionic liquids composite film modified glassy carbon electrodes. Electrochim Acta 56:636

    Article  CAS  Google Scholar 

  23. Xu CX, Sun FL, Gao H, Wang JP (2013) Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 780:20

    Article  CAS  Google Scholar 

  24. Zhao FQ, Xiao F, Zeng BZ (2010) Electrodeposition of PtCo alloy nanoparticles on inclusion complex film of functionalized cyclodextrin-ionic liquid and their application in glucose sensing. Electrochem Commun 12:168

    Article  CAS  Google Scholar 

  25. Wang H, Yuan X, Li DW, Gu XH (2012) Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts. J Colloid Interf Sci 384:105

    Article  Google Scholar 

  26. Huang HJ, Fan Y, Wang X (2012) Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol. Electrochim Acta 80:118

    Article  CAS  Google Scholar 

  27. Nam KW, Song JC, Oh KH, Choo MJ, Park H, Park JK, Choi JW (2012) Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated grapheme as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells. Carbon 50:3739

    Article  CAS  Google Scholar 

  28. Su DW, Kim HS, Kim WS, Wang GX (2013) A study of PtxCoy alloy nanoparticles as cathode catalysts for lithium-air batteries with improved catalytic activity. J Power Sources 244:488

    Article  CAS  Google Scholar 

  29. Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: a short review. Appl Catal Environ 63:137

    Article  CAS  Google Scholar 

  30. Antolini E, Salgado JRC, Gonzalez ER (2005) Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells. J Electroanal Chem 580:145

    Article  CAS  Google Scholar 

  31. Elisabete S, Laudemir CV, Villullas HM (2007) Carbon-supported Pt-Co catalysts prepared by a modified polyol process as cathodes for PEM Fuel Cells. J Phys Chem C 111:3146

    Article  Google Scholar 

  32. Peremans A, Tadjeddine A (1995) Electrochemical deposition of hydrogen on platinum single crystals studied by infrared-visible sum-frequency generation. J Chem Phys 103:7197

    Article  CAS  Google Scholar 

  33. Santos LGRA, Oliveira CHF, Moraes IR, Ticianelli EA (2006) Oxygen reduction reaction in acid medium on Pt-Ni/C prepared by a microemulsion method. J Electroanal Chem 596:141

    Article  CAS  Google Scholar 

  34. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493

    Article  CAS  Google Scholar 

  35. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus pt-skeleton surfaces. J Am Chem Soc 128:8813

    Article  CAS  Google Scholar 

  36. Niu XH, Lan MB, Chen C, Zhao HL (2012) Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta 99:1062

    Article  CAS  Google Scholar 

  37. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46

    Article  CAS  Google Scholar 

  38. Zhang H, Xu X, Yin Y, Wu P, Cai C (2013) Nonenzymatic electrochemical detection of glucose based on Pd1Pt3-graphene nanomaterials. J Electroanal Chem 690:19

    Article  CAS  Google Scholar 

  39. Xu Q, Yin LN, Hou CT, Liu XX, Hu XY (2012) Facile fabrication of nanoporous platinum by alloying-dealloying process and its application in glucose sensing. Sens Actuators B 173:716

    Article  CAS  Google Scholar 

  40. Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1

    Article  CAS  Google Scholar 

  41. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803

    Article  CAS  Google Scholar 

  42. Roh S, Kim J (2015) Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose. Microchim Acta 182:849

    Article  CAS  Google Scholar 

  43. Chen XM, Tian XT, Zhao LM, Huang ZY, Oyama M (2014) Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with grapheme nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181:783

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China through a project entitled “The synthesis of Pt-M/C nanoparticles and construction of non-enzymatic electrochemical biosensor” (Grant No. 21205030), and by the Science and Technology Department of Hubei province through a project entitled “The development of electrochemical biosensor based on non-noble metal nanocomposites”(2014CFB548), and by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, 2015-KF-13), and from the Natural Science Fund for Creative Research Groups of Hubei Province of China through a project entitled “Controllable Synthesis and Application of Nano-/microsized Functional Materials”(2014CFA015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, H., Wu, W., Yu, B. et al. Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@Pt core-shell nanoparticles. Microchim Acta 182, 1869–1875 (2015). https://doi.org/10.1007/s00604-015-1524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1524-6

Keywords

Navigation