Skip to main content
Log in

Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method of single-step electrodeposition of three-dimensionally (3-D) assembled Pt spheres on a gold-coated silicon wafer. The 3-D interconnected Pt spheres could be electrodeposited by applying a negative potential (−0.8 V, vs. Ag/AgCl) in neutral electrolytes containing KClO4. The application of such a negative potential is not possible in acidic solutions because of the formation of hydrogen. Scanning electron microscopy revealed that the seed Pt particles first grew to a certain size, and then form Pt spheres interconnected in multiple layers. The resulting 3-D assembled Pt sphere structures warrants a high surface area, and this property was utilized for the selective and sensitive amperometric determination of glucose at a working potential of 0.4 V (vs. Ag/AgCl), at near neutral pH values and in the presence of 0.1 M chloride. This straightforward method for the fabrication of 3-D assembled Pt sphere structures offers new opportunities for electroanalytical and electrocatalytic sensing based on porous Pt surfaces.

3-D assembled Pt sphere structures were prepared by single-step electrodeposition on a gold-coated silicon wafer by applying a negative potential in neutral electrolytes. Highly porous Pt structures were utilized for the selective and sensitive amperometric determination of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen AC, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767

    Article  CAS  Google Scholar 

  2. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18

    Article  CAS  Google Scholar 

  3. Velev OD, Gupta S (2009) Materials fabricated by micro- and nanoparticle assembly - the challenging path from science to engineering. Adv Mater 21:1897

    Article  CAS  Google Scholar 

  4. Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53:3558

    Article  CAS  Google Scholar 

  5. Tian N, Zhou ZY, Sun SG, Cui L, Ren B, Tian ZQ (2006) Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity. Chem Commun 4090

  6. Zhang H, Zhou W, Du Y, Yang P, Wang C (2010) One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem Commun 12:882

    Article  CAS  Google Scholar 

  7. Zhang M, Lv J-J, Li F-F, Bao N, Wang A-J, Feng J-J, Zhou D-L (2014) Urea assisted electrochemical synthesis of flower-like platinum arrays with high electrocatalytic activity. Electrochim Acta 123:227

    Article  CAS  Google Scholar 

  8. Liu J, Zhong C, Du X, Wu Y, Xu P, Liu J, Hu W (2013) Pulsed electrodeposition of Pt particles on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation. Electrochim Acta 100:164

    Article  CAS  Google Scholar 

  9. Ye F, Chen L, Li J, Li J, Wang X (2008) Shape-controlled fabrication of platinum electrocatalyst by pulse electrodeposition. Electrochem Commun 10:476

    Article  CAS  Google Scholar 

  10. Liu J, Hu W, Zhong C, Cheng YF (2013) Surfactant-free electrochemical synthesis of hierarchical platinum particle electrocatalysts for oxidation of ammonia. J Power Sources 223:165

    Article  CAS  Google Scholar 

  11. Bae JH, Han J-H, Chung TD (2012) Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys Chem Chem Phys 14:448

    Article  CAS  Google Scholar 

  12. Park S, Kim HC, Chung TD (2012) Electrochemical analysis based on nanoporous structures. Analyst 137:3891

    Article  CAS  Google Scholar 

  13. Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Owen JR, Wang JH (1997) Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278:838

    Article  CAS  Google Scholar 

  14. Bartlett PN, Baumberg JJ, Birkin PR, Ghanem MA, Netti MC (2002) Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres. Chem Mater 14:2199

    Article  CAS  Google Scholar 

  15. Park S, Lee SY, Boo H, Kim HM, Kim KB, Kim HC, Song YJ, Chung TD (2007) Three-dimensional interstitial nanovoid of nanoparticulate Pt film electroplated from reverse micelle solution. Chem Mater 19:3373

    Article  CAS  Google Scholar 

  16. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814

    Article  CAS  Google Scholar 

  17. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46

    Article  CAS  Google Scholar 

  18. Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046

    Article  CAS  Google Scholar 

  19. Wang P, Li F, Huang X, Li YX, Wang L (2008) In situ electrodeposition of Pt nanoclusters on glassy carbon surface modified by monolayer choline film and their electrochemical applications. Electrochem Commun 10:195

    Article  CAS  Google Scholar 

  20. Shibata M, Hayashi N, Sakurai T, Kurokawa A, Fukumitsu H, Masuda T, Uosaki K, Kondo T (2012) Electrochemical layer-by-layer deposition of pseudomorphic Pt layers on Au(111) electrode surface confirmed by electrochemical and In situ resonance surface X-ray scattering measurements. J Phys Chem C 116:26464

    Article  CAS  Google Scholar 

  21. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246

    CAS  Google Scholar 

  22. Surareungchai W, Deepunya W, Tasakorn P (2001) Quadruple-pulsed amperometric detection for simultaneous flow injection determination of glucose and fructose. Anal Chim Acta 448:215

    Article  CAS  Google Scholar 

  23. Chen X, Tian X, Zhao L, Huang Z, Oyama M (2014) Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181:783

    Article  CAS  Google Scholar 

  24. Shen Q, Jiang L, Zhang H, Min Q, Hou W, Zhu J-J (2008) Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385

    Article  CAS  Google Scholar 

  25. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb Networks. Anal Chem 80:997

    Article  CAS  Google Scholar 

  26. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803

    Article  CAS  Google Scholar 

  27. Cui H-F, Ye J-S, Zhang W-D, Li C-M, Luong JHT, Sheu F-S (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175

    Article  CAS  Google Scholar 

  28. Su LA, Jia WZ, Zhang LC, Beacham C, Zhang H, Lei Y (2010) Facile synthesis of a platinum nanoflower monolayer on a single-walled carbon nanotube membrane and its application in glucose detection. J Phys Chem C 114:18121

    Article  CAS  Google Scholar 

  29. Su C, Zhang C, Lu G, Ma C (2010) Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 22:1901

    Article  CAS  Google Scholar 

  30. Wei G, Xu F, Li Z, Jandt KD (2011) Protein-promoted synthesis of Pt nanoparticles on carbon nanotubes for electrocatalytic nanohybrids with enhanced glucose sensing. J Phys Chem C 115:11453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A1A2041671). This research was financially supported by the Ministry of Education (MOE) and NRF through the Human Resource Training Project for Regional Innovation (2012H1B8A2026112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongwon Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, S., Kim, J. Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose. Microchim Acta 182, 849–854 (2015). https://doi.org/10.1007/s00604-014-1397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1397-0

Keywords

Navigation