Skip to main content
Log in

Effects of Thermal Treatment on the Dynamic Mechanical Properties of Coal Measures Sandstone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Many projects such as the underground gasification of coal seams and coal-bed methane mining (exploitation) widely involve the dynamic problems of coal measures sandstone achieved via thermal treatment. This study examines the dynamic mechanical properties of coal measures sandstone after thermal treatment by means of an MTS653 high-temperature furnace and Split Hopkinson pressure bar test system. Experimental results indicate that 500 °C is a transition point for the dynamic mechanical parameters of coal measures sandstone. The dynamic elastic modulus and peak strength increase linearly from 25 to 500 °C while the dynamic peak strain decreases linearly over the same temperature range. The dynamic elastic modulus and peak strength drop quickly from 500 to 800 °C, with a significant increase in the dynamic peak strain over the same temperature range. The rock mechanics are closely linked to material composition and mesoscopic structure. Analysis by X-ray diffraction and scanning electron microscopy indicate that the molecules inside the sandstone increase in density due to the thermal expansion of the material particles, which effectively improves the deformation resistance and carrying capacity of the sandstone and reduces the likelihood of axial deformation. With heat treatment that exceeds 500 °C, the dynamic mechanical properties rapidly weaken due to the decomposition of kaolinite; additionally, hot cracking of the mineral particles within the materials arises from coal sandstone internal porosity, and other defects gradually appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bischoff PH, Perry SH (1991) Compressive behavior of concrete at high strain rates. Mater Struct 24(6):425–450

    Article  Google Scholar 

  • Cadoni E (2010) Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43(6):667–676

    Article  Google Scholar 

  • Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32(8–14):907–916

    Article  Google Scholar 

  • Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22(7):1456–1461

    Article  Google Scholar 

  • Chakraborty AK (2014) Phase transformation of kaolinite clay. Springer, India

  • Chen Y, Kobayashi T, Kuriki Y, Kusuda H (2008) Observation of microstructures in granite samples subjected to one cycle of heating and cooling. J Jpn Soc Eng Geol 49(4):217–226

    Article  Google Scholar 

  • Darot M, Reuschlé T (2000) Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite. Int J Rock Mech Min 37(7):1019–1026

    Article  Google Scholar 

  • David C, Menéndez B, Darot M (1999) Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min 36(4):433–448

    Google Scholar 

  • Doan M-L, Billi A (2011) High strain rate damage of Carrara marble. Geophys Res Lett 38(19):L19302

    Article  Google Scholar 

  • Doan M-L, Gary G (2009) Rock pulverization at high strain rate near the San Andreas fault. Nat Geosci 2(10):709–712

    Article  Google Scholar 

  • Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min 36(3):279–289

    Article  Google Scholar 

  • Ferrero AM, Marini P (2001) Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mech Rock Eng 34(1):57–66

    Article  Google Scholar 

  • Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46

    Article  Google Scholar 

  • Frew DJ, Akers SA, Chen W, Green ML (2010) Development of a dynamic triaxial Kolsky bar. Meas Sci Technol 21(10):105704

    Article  Google Scholar 

  • Ghabezloo S, Sulem J (2009) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42(1):1–24

    Article  Google Scholar 

  • Gray GT (2000) Classic Split-Hopkinson pressure bar testing. ASM Int Mater Park OH 8:462–476

    Google Scholar 

  • Han X, He X, Cong B (2012) The simulation analysis of fire feature on underground substation. In: Jin D, Lin S (eds) Advances in future computer and control systems. Springer, Heidelberg, pp 659–664

  • Heuze FE (1983) High-temperature mechanical, physical and thermal-properties of granitic-rocks—a review. Int J Rock Mech Min Sci Geomech Abstr 20(1):3–10

    Article  Google Scholar 

  • Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci Geomech Abstr 26(2):125–134

    Article  Google Scholar 

  • Inserra C, Biwa S, Chen YQ (2013) Influence of thermal damage on linear and nonlinear acoustic properties of granite. Int J Rock Mech Min Sci 62:96–104

    Google Scholar 

  • Jones C, Keaney G, Meredith PG, Murrell SAF (1997) Acoustic emission and fluid permeability measurements on thermally cracked rocks. Phys Chem Earth 22(1–2):13–17

    Article  Google Scholar 

  • Kendrick JE, Smith R, Sammonds P, Meredith PG, Dainty M, Pallister JS (2013) The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington. Bull Volcanol 75(7):1–12

    Article  Google Scholar 

  • Kim K, Kemeny J, Nickerson M (2014) Effect of rapid thermal cooling on mechanical rock properties. Rock Mech Rock Eng 47(6):2005–2019

    Article  Google Scholar 

  • Kimberley J, Ramesh KT (2011) The dynamic strength of an ordinary chondrite. Meteorit Planet Sci 46(11):1653–1669

    Article  Google Scholar 

  • Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62(11):676

    Article  Google Scholar 

  • Kuenzer C, Zhang J, Jing L, Guo H, Dech S (2013) Thermal infrared remote sensing of surface and underground coal fires. Therm Infrared Remote Sens Springer 17:429–451

    Article  Google Scholar 

  • Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39

    Article  Google Scholar 

  • Li LC, Tang CA, Wang SY, Yu J (2013) A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar. Tunn Undergr Space Technol 34:38–53

    Article  Google Scholar 

  • Lindholm US (ed) (1971) High strain rate tests, techniques of metalsresearch, measurement of mechanical properties, vol 5. Wiley Interscience, New York

    Google Scholar 

  • Lion M, Skoczylas F, Ledésert B (2005) Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone. Int J Rock Mech Min Sci 42(4):508–520

    Article  Google Scholar 

  • Lu AX, Jia M, Liu SJ (2004) Effects of heat treatment temperature on crystallization and thermal expansion coefficient of Li2O–Al2O3–SiO2. J Cent South Univ Technol 11(3):235–238

    Article  Google Scholar 

  • Luo JA, Wang LG (2011) High-temperature mechanical properties of mudstone in the process of underground coal gasification. Rock Mech Rock Eng 44(6):749–754

    Article  Google Scholar 

  • Mahmutoglu Y (1998) Mechanical behavior of cyclically heated fine grained rock. Rock Mech Rock Eng 31(3):169–179

    Article  Google Scholar 

  • Mambou LLN, Ndop J, Ndjaka JMB (2014) Theoretical investigations of mechanical properties of sandstone rock specimen at high temperatures. J Min Sci 50(1):69–80

    Article  Google Scholar 

  • Mohr D, Gary G, Lundberg B (2010) Evaluation of stress–strain curve estimates in dynamic experiments. Int J Impact Eng 37(2):161–169

    Article  Google Scholar 

  • Nasseri MHB, Tatone BSA, Grasselli G, Young RP (2009) Fracture toughness and fracture roughness interrelationship in thermally treated Westerly granite. Pure appl Geophys 166(5–7):801–822

    Article  Google Scholar 

  • Nemat-Nasser S, Isaacs J, Rome J (2000) Triaxial Hopkinson techniques. ASM handbook, mechanical testing and evaluation. ASM Int Mater Park OH 8:516–518

    Google Scholar 

  • Perkins RD, Green SJ, Friedman M (1970) Uniaxial stress behavior of porphyritic tonalite at strain rates to 103/second. Int J Rock Mech Min Sci Geomech Abstr 7(5):527–535

    Article  Google Scholar 

  • Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160(5–6):1137–1161

    Google Scholar 

  • Ramesh KT (2008) High rates and impact experiments. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics. Springer, US, pp 929–960

    Chapter  Google Scholar 

  • Ranjith PG, Daniel RV, Bai JC, Samintha M, Perera A (2012) Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127

    Article  Google Scholar 

  • Reuschlé T, Haore GS, Darot M (2006) The effect of heating on the microstructural evolution of La Peyratte granite deduced from acoustic velocity measurements. Earth Planet Sci Lett 243(3–4):692–700

    Article  Google Scholar 

  • Salje E, Kuscholke B, Wruck B, Kroll H (1985) Thermodynamics of sodium feldspar II: experimental results and numerical calculations. Phys Chem Miner 12(2):99–107

    Article  Google Scholar 

  • Sengun N (2014) Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab J Geosci 7(12):5543–5551

    Article  Google Scholar 

  • Siegesmund S, Mosch S, Scheffzük C, Nikolayev DI (2008) The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain. Environ Geol 55(7):1437–1448

    Article  Google Scholar 

  • Tang FR, Wang LG, Lu YL, Yang XQ (2015) Thermophysical properties of coal measure strata under high temperature. Environ Earth Sci 73(10):6009–6018

    Article  Google Scholar 

  • Tian H, Kempka T, Xu NX, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45(6):1113–1117

    Article  Google Scholar 

  • Tydlitát V, Trník A, Scheinherrová L, Podoba R, Černý R (2015) Application of isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–lime–metakaolin–water system. J Therm Anal Calorim. doi:10.1007/s10973-015-4727-5

    Google Scholar 

  • Vishal V, Pradhan SP, Singh TN (2011) Tensile strength of rock under elevated temperatures. Geotech Geol Eng 29(6):1127–1133

    Article  Google Scholar 

  • Wang XS, Wu BS, Wang QY (2005) Online SEM investigation of microcrack characteristics of concretes at various temperatures. Cement Concrete Res 35(7):1385–1390

    Article  Google Scholar 

  • Wang P, Xu J, Liu S (2014) Staged moduli: a quantitative method to analyze the complete compressive stress–strain response for thermally damaged rock. Rock Mech Rock Eng. doi:10.1007/s00603-014-0648-z

    Google Scholar 

  • Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45(6):879–887

    Article  Google Scholar 

  • Xu XL, Gao F, Shen XM, Xie HP (2008) Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. J China Univ Min Technol 18(3):413–417

    Article  Google Scholar 

  • Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min 47(1):94–103

    Article  Google Scholar 

  • Yin TB, Li XB, Xia KW, Huang S (2012) Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mech Rock Eng 45(6):1087–1094

    Article  Google Scholar 

  • Yin TB, Li XB, Cao WZ, Xia KW (2015) Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech Rock Eng. doi:10.1007/s00603-015-0712-3

    Google Scholar 

  • Yu QL, Ranjith PG, Liu HY, Yang TH, Tang SB, Tang CA, Yang SQ (2014) A mesostructure-based damage model for thermal cracking analysis and application in granite at elevated temperatures. Rock Mech Rock Eng. doi:10.1007/s00603-014-0679-5

    Google Scholar 

  • Yuan F, Prakash V, Tullis T (2011) Origin of pulverized rocks during earthquake fault rupture. J Geophys Res 116(B6):B06309

    Article  Google Scholar 

  • Zhang LY, Mao XB (2009) Experimental study on the mechanical properties of rocks at high temperature. Sci China Ser E-Technol Sci 52:641–646

    Article  Google Scholar 

  • Zhang QB, Zhao J (2013a) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439

    Google Scholar 

  • Zhang QB, Zhao J (2013b) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309

    Article  Google Scholar 

  • Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478

    Article  Google Scholar 

  • Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001) Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min 38(2):211–225

    Article  Google Scholar 

  • Zhang LY, Mao XB, Liu RX, Guo XQ, Ma D (2014) The mechanical properties of mudstone at high temperatures: an experimental study. Rock Mech Rock Eng 47(4):1479–1484

    Article  Google Scholar 

  • Zhu WC, Bai Y, Li XB, Niu LL (2012) Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests. Int J Impact Eng 49:142–157

    Article  Google Scholar 

  • Zuo JP, Xie HP, Zhou HW, Peng SP (2007) Thermal-mechanical coupled effect on fracture mechanism and plastic characteristics of sandstone. Sci China Ser E-Technol Sci 50(6):833–843

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Basic Research Program of China (No. 2013CB227900), The National Science Fund for Excellent Young Scholars (No. 51322401), Project supported by National Natural Science Foundation for Young (No. 51304200, 51304201 and 51104128), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120095110013), Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation (No. KYLX14_1371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbiao Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Mao, X., Cao, L. et al. Effects of Thermal Treatment on the Dynamic Mechanical Properties of Coal Measures Sandstone. Rock Mech Rock Eng 49, 3525–3539 (2016). https://doi.org/10.1007/s00603-016-0981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0981-5

Keywords

Navigation