Skip to main content
Log in

Thermophysical properties of coal measure strata under high temperature

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Thermophysical properties (such as specific heat capacity, thermal conductivity, and thermal diffusivity) of coal measure strata at a wide range of temperatures are important to coal in situ gasification with environmental treatments. These thermophysical properties have been investigated for different rocks but few are available for the rocks from coal measure strata. This study experimentally investigated the specific heat capacity and the thermal conductivity of six types of rock samples from coal measure strata, including sandy mudstone 1 and 2, mudstone, siltstone, coarse sandstone, and fine sandstone when the testing temperature varies from 100 to 1000 °C. Two critical temperatures, 500 °C for sandy mudstone 1 and 400 °C for the other five types of rock samples, were observed. The test results show that both the specific heat capacity and the thermal conductivity decrease with the increase of temperature when the testing temperature is below the critical temperature. When the testing temperature is over the critical temperature, the specific heat capacity is almost constant and the thermal conductivity still continues decreasing. These test results further show that the classical physics theory can well predict the experimental data for both specific heat capacity and thermal conductivity of six rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulagatova Z, Abdulagatov I, Emirov V (2009) Effect of temperature and pressure on the thermal conductivity of sandstone. Int J Rock Mech Min Sci 46(6):1055–1071

    Article  Google Scholar 

  • Alishaev MG, Abdulagatov IM, Abdulagatova ZZ (2012) Effective thermal conductivity of fluid-saturated rocks: experiment and modeling. Eng Geol 135–136:24–39

    Article  Google Scholar 

  • Buttner R, Zimanowski B, Blumm J, Hagemann L (1998) Thermal conductivity of a volcanic rock material (olivine–melilitite) in the temperature range between 288 and 1470 K. J Volcanol Geotherm Res 80(3–4):293–302

    Article  Google Scholar 

  • Chen YF, Li DQ, Jiang QH, Zhou CB (2012) Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks. Int J Rock Mech Min Sci 50:102–116

    Article  Google Scholar 

  • Cho WJ, Kwon S, Choi JW (2009) The thermal conductivity for granite with various water contents. Eng Geol 107(3–4):167–171

    Article  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations––a handbook of physical constants, vol 3. AGU Reference Shelf, American Geophysical Union, Washington, pp 105–126

  • Duchkov AD, Sokolova LS, Rodyakin SV, Chernysh PS (2014) Thermal conductivity of the sedimentary-cover rocks of the West Siberian Plate in relation to their humidity and porosity. Russ Geol Geophys 55(5):784–792

    Article  Google Scholar 

  • El Sayed AM (2011) Thermophysical study of sandstone reservoir rocks. J Petrol Sci Eng 76(3–4):138–147

    Article  Google Scholar 

  • Fuchs S, Förster A (2014) Well-log based prediction of thermal conductivity of sedimentary successions: a case study from the North German Basin. Geophys J Int 196(1):291–311

    Article  Google Scholar 

  • Fuchs S, Schütz F, Förster HJ, Förster A (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: correction charts and new conversion equations. Geothermics 47:40–52

    Article  Google Scholar 

  • Görgülü K, Durutürk YS, Demirci A, Poyraz B (2008) Influences of uniaxial stress and moisture content on the thermal conductivity of rocks. Int J Rock Mech Min Sci 45(8):1439–1445

    Article  Google Scholar 

  • Goto S, Matsubayashi O (2009) Relations between the thermal properties and porosity of sediments in the eastern flank of the Juan de Fuca Ridge. Earth Planets Space 61(7):863–870

    Article  Google Scholar 

  • Gruescu C, Giraud A, Homand F, Kondo D, Do DP (2007) Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct 44(3–4):811–833

    Article  Google Scholar 

  • Hall K (2011) Natural building stone composed of light-transmissive minerals: impacts on thermal gradients, weathering and microbial colonization; a preliminary study, tentative interpretations, and future directions. Environ Earth Sci 62(2):289–297

    Article  Google Scholar 

  • Huang K (original), Han RQ (adapted) (1999) Solid state physics. Higher Education Press, Beijing

  • Jobmann M, Buntebarth G (2009) Influence of graphite and quartz addition on the thermo–physical properties of bentonite for sealing heat-generating radioactive waste. Appl Clay Sci 44(3–4):206–210

    Article  Google Scholar 

  • Kitano K, Shin K, Kinoshita N, Okuno T (1988) Mechanical properties, thermal characteristics and permeability of rock under high temperature. J Jpn Soc Eng Geol 29(3):36–47

    Article  Google Scholar 

  • Kreynin EV (2012) An analysis of new generation coal gasification projects. Int J Min Sci Technol 22(4):509–515

    Article  Google Scholar 

  • Leth-Miller R, Jensen AD, Glarborg P, Jensena LM, Hansena PB, Jørgensenb SB (2003) Experimental investigation and modelling of heat capacity, heat of fusion and melting interval of rocks. Thermochim Acta 406(1–2):129–142

    Article  Google Scholar 

  • Liu SW, Feng CG, Wang LS, Li C (2011) Measurement and analysis of thermal conductivity of rocks in the Tarim Basin, Northwest China. Acta Geologica Sinica (English Edition) 85(3):598–609

    Article  Google Scholar 

  • Maqsood A, Kamran K (2005) Thermophysical properties of porous sandstones: measurements and comparative study of some representative thermal conductivity models. Int J Thermophys 26(5):1617–1632

    Article  Google Scholar 

  • Maqsood A, Rehman MA, Gul IH (2003) Chemical composition, density, specific gravity, apparent porosity, and thermal transport properties of volcanic rocks in the temperature range 253 to 333 K. J Chem Eng Data 48:1310–1314

    Article  Google Scholar 

  • Miao S, Li H, Chen G (2014) Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim 115(2):1057–1063

    Article  Google Scholar 

  • Noack V, Scheck-Wenderoth M, Cacace M (2012) Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin). Environ Earth Sci 67(6):1695–1711

    Article  Google Scholar 

  • Norden B, Förster A, Behrends K, Krause K, Stecken L, Meyer R (2012) Geological 3-D model of the larger Altensalzwedel area, Germany, for temperature prognosis and reservoir simulation. Environ Earth Sci 67(2):511–526

    Article  Google Scholar 

  • Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. In: Thermo-hydro-mechanical coupling in fractured rock. Springer, p 1137–1161

  • Popov Y, Romushkevich R, Korobkov D, Mayr S, Bayuk I, Burkhardt H, Wilhelm H (2011) Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico). Geophys J Int 184(2):729–745

    Article  Google Scholar 

  • Ray L, Förster HJ, Schilling FR, Forster A (2006) Thermal diffusivity of felsic to mafic granulites at elevated temperatures. Earth Planet Sci Lett 251(3–4):241–253

    Article  Google Scholar 

  • Rezaei HR, Gupta RP, Bryant GW, Hart JT, Liu GS, Bailey CW, Wall TF, Miyamae S, Makino K, Endo Y (2000) Thermal conductivity of coal ash and slags and models used. Fuel 79:1697–1710

    Article  Google Scholar 

  • Roufosse MC, Jeanloz R (1983) Thermal conductivity of minerals at high pressure: the effect of phase transitions. J Geophys Res Solid Earth 88(B9):7399–7409

    Article  Google Scholar 

  • Schärli U, Rybach L (2001) Determination of specific heat capacity on rock fragments. Geothermics 30(1):93–110

    Article  Google Scholar 

  • Shabbir G, Maqsood A, Majid CA (2000) Thermophysical properties of consolidated porous rocks. J Phys D-Appl Phys 33:658–661

    Article  Google Scholar 

  • Sipio ED, Chiesa S, Destro E, Galgaro A, Giaretta A, Gola G, Manzella A (2013) Rock thermal conductivity as key parameter for geothermal numerical models. Energy Procedia 40:87–94

    Article  Google Scholar 

  • Teklu H, Clinton CL, James EB (2007) Determination of heat capacity of Yucca Mountain stratigraphic layers. Int J Rock Mech Min Sci 44(7):1022–1034

    Article  Google Scholar 

  • Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth Parts A/B/C 28(9–11):499–509

    Article  Google Scholar 

  • Wai RS, Lo KY, Rowe RK (1982) Thermal stress analysis in rocks with nonlinear properties. Int J Rock Mech Min Sci Geomech Abstr 19(5):211–220

    Article  Google Scholar 

  • Wall TF, Mai-Viet T, Becker HB, Gupta RP (1979) Fireside deposits and their effect on heat transfer in p.f. boilers: the emissivity and thermal conductivity of deposits and their components. In: Proceedings pulverised coal firing––the effects of mineral matter. University of Newcastle, pp L8.1–L8.16

  • Wan ZJ (2009) Theory of the thermomechanical coupling of heterogeneous rock and the stability of underground coal gasification channel. China University of Mining and Technology Press, Xuzhou

    Google Scholar 

  • Wang DY, Lu XC, Song YC, Shao R, Qi T (2010) Influence of the temperature dependence of thermal parameters of heat conduction models on the reconstruction of thermal history of igneous-intrusion-bearing basins. Comput Geosci 36(10):1339–1344

    Article  Google Scholar 

  • Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Yang Ju, Dr. Xianbiao Mao, and Dr Ruidong Peng for their valuable time, help and suggestions. The financial supports of the National Natural Science Foundation of China (Grant No. 51204159), the National Basic Research Program of China (Grant No. 2011CB201201), the National Science Fund for Distinguished Young Scholars (Grant No. 51125017), the National Natural Science Foundation of China (Grant No. 51104128) and the Fundamental Research Funds for the Central Universities (Grant No. 2011QNB05) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Wang, L., Lu, Y. et al. Thermophysical properties of coal measure strata under high temperature. Environ Earth Sci 73, 6009–6018 (2015). https://doi.org/10.1007/s12665-015-4364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4364-0

Keywords

Navigation